
Notes on Orbifolds I

Why is an Étale Lie Groupoid?

Rylee Lyman

Abstract

The purpose of these notes is to try and understand Haefliger’s work
on orbifolds. Surely nothing here is original. Indeed, some of it is literally
just a restatement of chapter III.G of [BH99].

1 Basic Definitions

The following is just a restatement of the definition appearing in [BH99]. Let Q
be a Hausdorff topological space. A differentiable orbifold structure of dimension
n on Q is the following data:

1. An open covering {Vi : i ∈ I} of Q.

2. For each i ∈ I, a simply-connected n-manifold Xi and a finite subgroup
Γi of the group of diffeomorphisms of Xi together with a continuous map
qi : Xi → Vi, called a uniformizing chart, such that qi induces a homeo-
morphism Γi\Xi → Vi.

3. For each xi ∈ Xi and xj ∈ Xj satisfying qi(xi) = qj(xj), a diffeomorphism
h from a connected neighborhood W of xi to a neighborhood of xj such
that qjh = qi|W . Such a map h is called a change of chart and is well-
defined up to composition with an element of Γj . In particular, one verifies
that if i = j, then h is the restriction of an element of Γi.

We call the family (Xi, qi)i∈I an atlas for the orbifold structure on Q. We say
two atlases are equivalent if their disjoint union satisfies condition (3) above.

We are about to abstract the setting significantly. The idea is that we will
use the structure of the atlas in order to define how to work with Q. One goal
of these notes is to learn how to work with Q more directly while still producing
correct results.

From the (Xi, qi) we can form their disjoint unionX =
∐

i∈I Xi, which comes
with a map q =

∐
i∈I qi to Q. The changes of charts assemble into a pseudogroup

of local diffeomorphisms H. To wit, an element of H is a diffeomorphism defined
on an open subset U of X such that qh = q|U , and this collection satisfies the
following properties.
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1. If h : U → V and h′ : U ′ → V ′ belong to H, then their composition

hh′ : h′−1(U ∩ V ′)→ h(U ∩ V ′)

belongs to H.

2. The restriction of h ∈ H to any open set of X belongs to H.

3. The identity 1X : X → X belongs to H.

4. Let U ⊂ X be an open subset and let h : U → V be a diffeomorphism.
If {Uj : j ∈ J} is an open covering of U such that there exist elements
hj ∈ H such that h =

⋃
j∈J hj , then h ∈ H. (This is a restricted gluing-

type construction.)

We say two points x and x′ in X are in the same H-orbit if there exists h ∈ H
such that h(x) = x′. This defines an equivalence relation on X, and the map
q : X → Q defines a homeomorphism H\X → Q. The upshot of this definition
is that the pair (H, X) caaptures all of the data of the orbifold structure on Q,
at least up to a notion of equivalence. To flesh this out further, we need one
more definition. I will write it out a little pedantically because I am unused to
it.

Spaces of Germs Given a pair of spaces X and Y , we can construct a space
of germs of (partially defined) maps from X to Y in the following way. Points
of the space of germs are equivalence classes of pairs (x, f), where x is a point
of X and f : U → Y is a map defined on a neighborhood of x. The pair (x, f) is
equivalent to (x′, f ′) if x = x′ and if f and f ′ agree when restricted to an open
neighborhood of x. Let us call the space of germs G = G(X,Y ). The definition
comes equipped with maps α : G → X and ω : G → Y , where α(x, f) = x, and
ω(x, f) = f(x).

A basis for the topology on G is defined in the following way: for U an open
subset of X, and f : U → Y a continuous map, the basis element Uf is the
union of the germs (x, f) as x varies over the points of U . Thus G is a Hausdorff
space if and only if for each pair (x, f) and (x′, f ′) of distinct germs, we can
find open neighborhoods U of x and U ′ of x′ such that the germs of f and f ′

remain distinct on each point of U ∩U ′. The maps α and ω are continuous, and
α is étale, that is, an open map and locally a homeomorphism. If Z is a third
space, g ∈ G(X,Y ) and g′ ∈ G(Y, Z) with α(g′) = ω(g), it makes sense to define
the composition g′g ∈ G(X,Z).

In the case we are interested in, X is the space constructed from our atlas for
the orbifold Q, and G is the space of germs of changes of charts, in other words,
X = Y , and the maps f we are interested are those diffeomorphisms of open
subsets of X satisfying qf = q. In this case, the map ω : G → X is also étale,
and composition of germs gives G the structure of a differentiable groupoid.

Two more bits of notation: given x ∈ X, we define the isotropy group at x
to be the set

Gx = {f ∈ G : α(f) = ω(f) = x}.
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Notice that the multiplication and inversion on G send Gx to itself and induce a
group structure on this set, hence our terminology. In our setting, each isotropy
group is isomorphic to a subgroup of some finite group Γi from our original
definition of an orbifold atlas. We also have the orbit of x, which is the set

G.x = {y ∈ X : ∃f ∈ G such that α(f) = x and ω(f) = y}.

The orbits assemble into a quotient space G\X, which in our case is naturally
homeomorphic to Q.

2 Morphisms of Groupoids

Since we have constructed a differentiable groupoid as a stand-in for our orbifold
Q, one might expect that maps of orbifolds should be functors of the associated
groupoid. This is mostly the case, with one pesky wrinkle. A homomorphism
of differentiable groupoids f : (G, X)→ (G′, X ′) is a continuous functor f : G →
G′ inducing a continuous map fX : X → X ′. If fX is a differentiable map,
then we say f is a differentiable homomorphism. Observe that by definition, f
induces a map G\f : Q→ Q′. Furthermore, for every point x ∈ X, f induces a
homomorphism fx : Gx → G′fX(x).

A functor of differentiable groupoids is an equivalence if it is an equivalence
of categories. In practical terms, this means that G\f : Q→ Q′ is a homeomor-
phism and fx : Gx → Gf(x) is an isomorphism for all x ∈ X. Notice that f does
not have to be a homeomorphism of G, nor even injective!

Here is where we have to pay the piper. Because the atlas X is not an
intrinsic part of the definition of the orbifold structure on Q, neither is G, only
its equivalence class. Therefore, we will need to consider equivalence classes of
differentiable groupoids representing our orbifold Q. Hopefully this headache
will become easier to manage when we return to the ground in the next section.
One helpful fact that we will not attempt to prove is that (G, X) is equivalent
to (G′, X ′) if and only if there exists a third differentiable groupoid (G′′, X ′′)
and equivalences (G′′, X ′′)→ (G, X) and (G′′, X ′′)→ (G′, X ′).

3 Morphisms of Orbifolds

In this section we are ready to return to earth with our hard-won insights—
I hope. Suppose for a moment that M and N are differentiable manifolds. A
continuous map f : M → N of the underlying topological spaces is differentiable
exactly when, for every pair of charts qi : Xi →M and pj : Yj → N , the resulting
map p−1j ◦ f ◦ qi : Xi → Yj is differentiable as a map between Euclidean spaces
whenever f |qi(Xi)∩Yj 6= ∅. In fact, if (X, q) and (Y, p) denote the disjoint unions
resulting from our choices of atlas, we would like f to induce a differentiable
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map F : X → Y such that the following diagram commutes

X Y

M N.

F

q p

f

We can show that this is in fact the case, but it doesn’t quite come for free. In
general we will have to pass to a finer atlas of M in order to define F . Consider
the covering of M given by f−1(pj(Yj)). Define a new atlas (X ′i, q

′
i) such that

for each i, q′i(X
′
i) is contained in exactly one of the sets f−1(pj(Yj)). As before,

we assume each of the X ′i are simply connected open subsets of Rm. Now for
each pair (i, j), there exists a map fij : X ′i → Yj such that the following diagram
commutes

X ′i Yj

M N,

fij

q′i pj

f

and moreover these maps assemble into a differentiable map F : X ′ → Y fitting
into the commutative diagram we wanted:

X ′ Y

M N.

F

q′ p

f

Note that if we want, we could choose the atlas (X ′, q′) to refine the open
covering given by the original atlas (X, q). In this case there is a morphism
above the identity of M that expresses the fact that the atlas (X ′, q′) refines
(X, q).

Note further that the map F is equivariant in the following sense. Let HM

and HN denote the associated pseudogroups of changes of charts. Suppose
h : X ′i → X ′j is an element of HM . Then there exists a k ∈ HN such that
Fh = kF |X′

i
.

This allows us to define an action of F on the corresponding groupoids of
germs GX′ and GY ! To wit, suppose (x, h) ∈ GX′ represents the germ of an
element h ∈ HM at x ∈ X ′. We shall use the equation

Fh = kF |X′
i

to define F∗ : GX′ → GY by setting F∗(x, h) = (F (x), k). One of course has
to check that the choice of k is well-defined on the level of germs. In fact, F∗
defines a differentiable functor!

It is now that we will wave our hands and say the word “orbifold” everywhere.
Let Q and Q′ be orbifolds. A map f : Q → Q′ defines a differentiable map
of orbifolds when for any atlas groupoid (GY , Y ) for Q′, there exists an atlas
groupoid (GX , X) for Q and a differentiable functor F∗ : GX → GY such that the
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resulting quotient map G\F∗ : GX\X → GY \Y is equal to f : Q→ Q′. Two such
differentiable functors define the same map of orbifolds if they share a common
refinement.

In other words, a map f : Q→ Q′ is a differentiable map of orbifolds when-
ever for any uniformizing chart pj : Yj → Q′, and any open cover (Ui)i∈I of
f−1(pj(Yj)) with uniformizing charts qi : Xi → Ui, we have differentiable maps
fij : Xi → Yj such that the following diagram commutes

Xi Yj

Q Q′.

fij

qi pj

f

In particular, there exists a homomorphism (not really uniquely determined)

f̂ij : Γi → Γj such that fij(γ.x) = f̂ij(γ).fij(x) for all γ ∈ Γi.
For the moment, we will beg to be allowed to be a little cagey about the

question of whether a differentiable map of orbifolds is uniquely determined by
its expression as f : Q→ Q′. A differentiable map is a diffeomorphism if it has
a two-sided inverse.

Covering Maps Let p : O → Q be a morphism of orbifolds. If there exists
an atlas Y for O and an atlas X for Q such that the resulting map P : Y → X
is a covering map, then we say p itself is a (orbifold) covering map.

By refining Y if necessary, we may make the following useful assumption:
for every change of charts h : U → U ′ belonging to H, there exists a change of
charts ĥ : P−1(U)→ P−1(U ′) such that

P−1(U) P−1(U ′)

U U ′.

ĥ

P P

h

Furthermore, we have

ĥh′ = ĥĥ′ and ĥ−1 = ĥ−1.

Indeed, we may define a pseudogroup of changes of charts for Y by taking the
pseudogroup “generated by” the ĥ (and their unions and restrictions to open
sets). By passing to germs, we recover the action of P on GY . Also, given a
component Xi with associated finite group Γi, looking at the elements γ̂ for
γ ∈ Γi, we get an action of Γi on P−1(Xi). By choosing a component of the
preimage Yi, we get an injection of its stabilizer under the action of Γi, which
we write as ΓY,i → Γi. Alternatively, one could interpret this as saying that
given a point y ∈ Y with P (y) = x, P induces a monomorphism on isotropy
groups Gy → Gx.

Let x be a point of X. Suppose the cardinality of the set of HY -orbits
in P−1(X) is finite, and let {x1, . . . , xk} be a set of representatives of these
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preimages. We have
k∑

i=1

#(Gxi) = dx ·#(Gx).

In fact, if Q is connected, then as x varies, the quantity on the right-hand side
stays constant. This is the degree of the cover. If one HY -orbit is infinite, then
all orbits are infinite, and we say the degree of the cover is infinite.

Galois Coverings Suppose, in the situation above, that there exists a group
G such that G acts simply transitively on each fiber of P , i.e. that P : Y → X
is a Galois cover with Galois group G, and suppose further that each lift ĥ
commutes with the G-action, in the sense that ĥ(g.y) = g.ĥ(y). Notice that
because each Xi is simply connected, the cover restricted to Xi is trivial. That
is, given a section Xi → P−1(Xi), we may identify P−1(Xi) with G × Xi.
Furthermore the G-action is by left-translation in the first factor and trivial in
the second factor. Given γ ∈ Γi, we know that γ̂ preserves P−1(Xi), and so we
have

γ̂.(g, x) = (gϕi(γ)−1, γ.x).

It is not immediately obvious why the action on G should be given by right
translation after applying a homomorphism ϕi : Γi → G, but if we write ϕi(γ)−1

for the action of γ applied to 1 ∈ G, we have

1 ϕi(γ)−1

g gϕi(γ)−1,

demonstrating that the action of γ is by right translation. It follows easily that
ϕi actually defines a homomorphism ϕi : Γi → G. The reason for the presence
of the inverse is that right translation is naturally a right action, but we have
assumed that Γi acted on the left; inverting is the standard method of converting
left actions to right actions.

Note that the action of G on Y descends to an action of G on O and yields
a homeomorphism G\O ∼= Q. Let Yi = {1} ×Xi in the identification of G×Xi

with P−1(Xi). Each connected component of Y is of the form g.Yi for some
i ∈ I and g ∈ G. Let q̂ : Y → O be the union of the uniformizing charts. The
finite group associated to Yi is the kernel of ϕi : Γi → G. Let Γi,g be the finite
group resulting from restricting elements γ̂ for γ ∈ Γi such that γ ∈ kerϕi to
gYi. The uniformizing chart g.q̂i induces a homeomorphism Γi,g\Yi ∼= g.q̂i(Yi).

By definition, we have O =
⋃

(i,g)∈I×G g.q̂i(Yi). By definition, the subgroup

ϕi(Γi) leaves q̂i(Yi) invariant; in fact, we have g.q̂i(Yi) ∩ q̂i(Yi) 6= ∅ if and only
if g belongs to ϕi(Γi). Thus the group G acts properly on O! If further each
ϕi is injective, then each uniformizing chart is actually a manifold chart; in this
situation O is itself a differentiable manifold and Q is the quotient of O by the
proper action of G.
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