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Abstract

In a previous paper, we showed that the group of outer automorphisms of the free
product of two nontrivial finite groups with an infinite cyclic group has infinitely many
ends, despite being of virtual cohomological dimension two. The main result of this paper
is that aside from this exception, having virtual cohomological dimension at least two
implies the outer automorphism group of a free product of finite and cyclic groups is one
ended. As a corollary, the outer automorphism groups of the free product of four finite
groups or the free product of a single finite group with a free group of rank two are virtual
duality groups of dimension two, in contrast with the above example. We also prove that
groups in this family are semistable at infinity (or at each end). Our proof is inspired by
methods of Vogtmann, applied to a complex first studied in another guise by Krstić and
Vogtmann.

Duality groups. A group G of type FP∞ is a duality group of dimension n in the sense of
Bieri–Eckmann [BE73] if there exists a G-module D such that for any G-module A and any
integer k, we have an isomorphism

Hk(G;A) ∼= Hn−k(G;D ⊗Z A),

whereG acts onD⊗ZA diagonally. The dimension, n, turns out to be equal to the cohomological
dimension of G, which is thus torsion free, and is therefore determined by G. Similarly, the
dualizing module D turns out to be determined by G; it is isomorphic to Hn(G;ZG).

Many important examples of groups are duality groups, or more generally, virtual duality
groups, having a duality group as a subgroup of finite index. (Virtual duality groups are
thus allowed to have torsion, but they will be virtually torsion free.) Among these are, of
course, groups having a closed manifold as a K(π, 1), but also fundamental groups of knot
complements, mapping class groups of closed surfaces, and, most relevant to the current paper,
Out(Fn) [BF00].

This paper is motivated by the following question.

Question A. Let F be a free product of finite and cyclic groups. Is the outer automorphism
group of F a virtual duality group?

The group Out(F ) is of type FP∞ and virtually torsion free, so the question makes sense.
As we showed, but did not remark, in [Lym22a], the answer to this question is sometimes “no”.

Our main result is the following.
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Theorem B. Let F = A1∗· · ·∗An∗Fk be a free product of the finite groups Ai with a free group
of rank k. The invariants n and k determine the number of ends of Out(F ) in the following
way. 

n ≤ 1, k ≤ 1 or (n, k) = (2, 0) Out(F ) is finite, i.e. has zero ends.

(n, k) = (3, 0), (2, 1), (0, 2) Out(F ) has infinitely many ends.

otherwise Out(F ) has one end.

Ends of groups. Let us explain. Celebrated results of Freudenthal and Hopf say that a
finitely generated group G has 0, 1, 2, or infinitely many ends. An end of a topological
space X is a compatible choice, for every compact subset K of X, of a path component of
the complement X − K. Put another way, if K ⊂ K ′ are compact subsets of X, every path
component of X −K ′ determines a path component of X −K ′, and in fact we have an inverse
system of sets (or spaces, if we’d like to give them the discrete topology). The space of ends of
X, is the inverse limit

lim←−
K

π0(X −K)

and the number of ends is its cardinality. What Freudenthal and Hopf prove is that the number
of ends of a connected CW-complex, or if you’d like, a Cayley graph, that a finitely generated
group G acts on with finite stabilizers and finite (i.e. compact) quotient is in fact an invariant
of the group, and that if a group has at least three ends, it has infinitely many.

One way to think about one-endedness, which is in some sense generic, is to say that,
supposing we have fixed an exhaustion of X by compact sets K0 ⊂ K1 ⊂ · · · , for any two
points “sufficiently far from Kn”, say belonging to X − KN for N sufficiently larger than n,
those two points can be connected by a path that avoids Kn. Thus for example the line is not
one ended (in fact it has two ends), while the plane is.

End invariants of groups. This reframes one-endedness as 0-connectivity at infinity, and
naturally leads one to generalize to questions about higher homotopy or homology groups “at
infinity”. The plane, then, would fail to be simply connected at infinity, since a loop encircling
our compact set KN is not nullhomotopic in X −Kn as soon as Kn is nonempty, while Rn for
larger n would be simply connected at infinity.

To ask these questions for groups, one needs to be slightly careful. After all, every finitely
generated group has a Cayley graph, and graphs have no higher homotopy groups. In the case
of the plane, what is interesting is that every loop is nullhomotopic in the plane as a whole,
but may not remain so after removing a compact set. Thus we put restrictions on the spaces in
question, asking them to be n-connected in the ordinary sense, before we ask whether they are
n-connected at infinity. This has the effect for groups of restricting our attention to groups with
certain finiteness properties, which generalize being finitely generated or finitely presented.

Semistability. Even with this restriction, there is a subtlety: the fundamental group—for
instance—needs a basepoint, but as we work in the complements of a compact exhaustion no
single basepoint will do. Making a choice of basepoint for π1(X − Kn, ⋆n) for each n and a
path from ⋆n to ⋆n−1, we produce a proper ray in X. To show that resulting inverse limit

lim←−
n

π1(X −Kn, ⋆n)

is independent of our choices, we would need to show that any two proper rays (ending in the
same end if there is more than one) are properly homotopic. For locally finite complexes X,
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so in particular for finitely presented groups, this is equivalent by [Geo08, Proposition 16.1.2]
to the condition that this inverse system of groups is semistable or satisfies the Mittag-Leffler
condition: for each n there exists N such that for k ≥ N , the image of π1(X − KN , ⋆n) in
π1(X −Kn, ⋆n) is equal to the image of π1(X −Kk, ⋆k) in π1(X −Kn, ⋆n).

Unwinding this definition, we see that it is equivalent to the claim that every loop in X−KN

based at ⋆N may be pushed off to X −Kk (along our proper ray, if you’d like) by a homotopy
that avoids Kn.

The relevance to group cohomology is that if G is semistable at each end in the above sense,
then H2(G,ZG) is a free abelian group [Geo08, Theorem 16.5.1]. It turns out that if G is
(n−2)-connected at infinity, (as the plane and hence Z2 is 0-connected at infinity, for instance,
although merely being (n−2)-acyclic will do) then Hi(G,ZG) = 0 for i < n, and Hn(G,ZG) is
torsion free [Geo08, BM01]. (Thus for a one-ended group semistability is somewhere between
one-endedness and simple connectivity at infinity.) A group G of type FP∞ is a duality group
of dimension n if and only if Hi(G,ZG) = 0 for i ̸= n and Hn(G,ZG) is nontrivial and torsion
free. If additionally G has cohomological dimension n, then Hi(G,ZG) = 0 for i > n and
Hn(G,ZG) is nontrivial.

Thus the combination of (n− 2)-connectivity at infinity with having virtual cohomological
dimension n implies that a group G of type FP∞ is a virtual duality group.

Additionally, let us remark that it is an open question whether every finitely presented
group G satisfies that H2(G,ZG) is free abelian, hence whether every finitely presented group
is semistable at each end. We are able to answer this in the affirmative for Out(F ) when F is
a free product of finite and cyclic groups.

Theorem C. Let F = A1 ∗ · · · ∗ An ∗ Fk be a free product of the finite groups Ai with a free
group of rank k. The group Out(F ) of outer automorphisms of F is semistable at each end.

Corollary D. For F as above, writing G = Out(F ), we have that H2(G,ZG) is free abelian.

The case of Out(F ). From here we discuss Out(F ), where F = A1 ∗ · · · ∗ An ∗ Fk is the
free product of the finite groups Ai with a free group of rank k, and Out(F ) denotes its outer
automorphism group, Aut(F )/ Inn(F ). The virtual cohomological dimension of Out(F ) was
computed by Krstić and Vogtmann [KV93]; it is equal to the dimension of a certain contractible
simplicial complex L that Out(F ) acts on with finite stabilizers and finite quotient. We will
call this complex the spine of (reduced) Outer Space for F . The groups Out(F ), which are
virtually torsion free, are thus virtually of type F , hence certainly of type FP∞. In any case,
the dimension of L can be computed from the invariants n and k by the following rule

dim(L) =

{
2k + n− 2 n ≥ 2,

max{2k + n− 3, 0} otherwise.

Thus, to prove that Out(F ) is a virtual duality group, it suffices to show that it is (2k+n−4)-
connected at infinity if n ≥ 2 or (2k − n − 5)-connected at infinity otherwise. In particular,
when L has dimension 2, we need only show that Out(F ) is one ended. There are three such
cases: F = A1 ∗A2 ∗A3 ∗A4, F = A1 ∗A2 ∗Z and F = A1 ∗F2. In the first case, one-endedness
follows from a result of Das [Das18], who shows that Out(F ) is thick when F = A1 ∗ · · · ∗ An

and n ≥ 4. The third case is covered by Theorem B, but in the second, Theorem B states that
Out(F ) has infinitely many ends: this is part of the main result of [Lym22a]. This is why the
answer to Question A is “no” for some choices of F . We view Theorem B as partial progress
towards a full answer to Question A.
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In view of Theorem C and the fact that Out(A1 ∗ A2 ∗ A3 ∗ A4) and Out(A1 ∗ F2) are
one-ended groups of virtual cohomological dimension two, these groups have a well-defined
fundamental group at infinity, namely the inverse limit of the fundamental groups as discussed
in the semistability paragraph above. Because H2(G,ZG) is nontrivial, this fundamental group
is nontrivial. What is it?

Question E. What is the fundamental group of Out(A1 ∗ A2 ∗ A3 ∗ A4) or Out(A1 ∗ F2) at
infinity?

Our proof of Theorem B is inspired by Vogtmann’s paper [Vog95]. There she analyzes the
combinatorial structure of links of certain vertices of the Spine of Outer Space (for F = Fk) to
push paths and homotopies off to infinity. The Spine of Outer Space for general F likewise has a
rich combinatorial structure; the present paper is a first contribution towards an understanding
of it in general.

Like the papers [CV86, KV93], we proceed by putting a kind of “height function” on certain
vertices of the complex L of minimal complexity we term “briar patches”. (A briar patch may
have petals, like a rose, and thorns like a thistle, but may also sprawl somewhat.) Vertices of
L correspond to marked graphs of groups (or if you’d rather, actions of F on trees), and the
height function records the lengths of immersed loops associated to a predetermined finite set
of conjugacy classes (or if you’d rather, the hyperbolic translation lengths of these conjugacy
classes).

The proof of contractibility of L in [CV86, KV93] goes by showing, using “peak-reduction”
techniques, that these height functions behave somewhat like non-singular Morse functions, al-
lowing one to contract the whole complex onto the subcomplex where the function is minimized,
and then arguing that by carefully choosing the finite set of conjugacy classes, this minimal
subcomplex is manifestly contractible.

Like Vogtmann in [Vog95], we’d like to do the opposite: The height function provides an
exhaustion of L; for well-chosen finite sets, this is a compact exhaustion, defining for us a
sequence of compact subsets of L we call “balls”. Analyzing the combinatorics of the spine
allows us to understand how our height function changes as we move around the star of a single
vertex of L.

Firstly, we restrict our attention to a family of “standard paths”, which look like a sequence
of one-edge expand–collapse moves (the term is “Whitehead move”) between briar patches. In
the case F = Fk, these moves between roses have the effect of applying Whitehead automor-
phisms to the fundamental group, hence the name. Supposing that τ2k is a briar patch along
such a path which is a kind of local minimum for the height function, the game is to find a
new standard path between the adjacent briar patches τ2(k−1) and τ2(k+1) that passes through
briar patches of height strictly greater than that of τ . By doing so while staying within the star
of τ , we have a homotopy between the old path and the new one, and by iteratively applying
this method to all local minima, we are able to push our path off to infinity. It turns out that
when this strategy of proof works, it suffices to prove semistability as well; we turn to this in
Section 3.

Acknowledgments. The author is pleased to thank Kim Ruane for suggesting that Theo-
rem C might be in reach given Theorem B. This material is based on work supported by the
National Science Foundation under Award No. DMS-2202942.
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1 The Complex L

We work in the spine of reduced Outer Space for F , a simplicial complex which we denote as
L = L(F ). A more detailed definition is given in [Lym22a]. A vertex of L corresponds to an
action of F on a simplicial tree T with finite stabilizers (and in fact trivial edge stabilizers). In
this paper it will be more convenient to work in the quotient graph of groups G = F\\T . We
assume a certain amount of familiarity with graphs of groups in this paper and refer the reader
to [Ser03], [Bas93], [SW79] and [Lym22c, Section 1] for background on graphs of groups. We
will follow the notation in [Lym22c], although almost everything we write is standard. The
main innovation of [Lym22c] that we need is the notion of a homotopy equivalence between
graphs of groups and homotopy of maps of graphs of groups.

Fix a finite graph of finite groups G, a basepoint ⋆ ∈ G and an identification F ∼= π1(G, ⋆).
A marked graph of groups τ = (G, σ) is a graph of finite groups G together with a homotopy
equivalence σ : G→ G called the marking. Two marked graphs of groups (G, σ) and (G′, σ′) are
equivalent if there is an isomorphism h : G → G′ such that the following diagram commutes up
to homotopy

G

G

G′.

h

σ

σ′

The complex L. A vertex of the complex L is determined by an equivalence class of marked
graphs of groups (G, σ) satisfying the following conditions.

1. Edge groups of G are trivial.

2. Each valence-one and valence-two vertex of G has nontrivial vertex group.

3. If an (open) edge e separates G, each component of the complement contains a vertex
with nontrivial vertex group.

A marked graphs of groups G determining a vertex of L, is reduced if collapsing any edge of
G yields a marked graph of groups not homotopy equivalent to G (because the collapse map
cannot be “undone”, for example because maybe the resulting graph of groups has an infinite
vertex group). The third condition above is equivalent to asking that for each edge e of G,
there is a reduced marked graph of groups G′ which may be obtained from G by collapsing
edges in which the edge e is not collapsed. In the language of [Cla09, GL07], we say the edge
e is surviving.

Two vertices (G, σ) and (G′, σ′) are connected by an oriented edge if a marked graph of
groups equivalent to (G′, σ′) can be obtained from (G, σ) by collapsing certain edges in G, and
in general L possesses a simplex whenever its 1-skeleton is present. As observed in [Lym22b,
Theorem 3.1], the main result of Krstić–Vogtmann [KV93] implies that L is contractible. The
dimension of L is 2k + n− 2 when n ≥ 2 and 2k + n− 3 when n ≤ 1 and k > 1.

We assume, in view of [Vog95], throughout this paper that n ≥ 1. The edge number of F
is the quantity en(F ) = 2k + n − 1. If τ = (G, σ) is a reduced marked graph of groups with
exactly one vertex v of valence at least two, then the edge number of F is the valence of v.

The norm ∥ · ∥. Given a finite set W of infinite order elements of F and a reduced marked
graph of groups τ = (G, σ), we define a norm on τ as

∥τ∥ =
∑
w∈W

ℓ(w),
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where ℓ(w) is the hyperbolic translation length of w on the Bass–Serre tree T of G. The star of
a reduced marked graph of groups τ is the subcomplex of L spanned by those marked graphs of
groups τ ′ which collapse onto τ . The ball of radius r is the union of the stars of reduced marked
graphs of groups τ with norm at most r. It is contractible. Krstić–Vogtmann prove [KV93,
Proof of Proposition 6.3] that for appropriate choice of W , balls of radius r are compact. We
therefore chooseW such that balls of radius r are compact. This gives us a compact exhaustion
of L.

Directions and turns. Let v be a vertex of a marked graph of groups (G, σ). We write st(v)
for the set of oriented edges with initial vertex v. The set of directions at v is

Dv =
∐

e∈st(v)

Gv × {e}.

(Recall that marked graphs of groups have trivial edge groups in this paper.) There is an
obvious action of Gv on Dv; each orbit is an oriented edge e ∈ st(v). A turn is the Gv-orbit of
a pair {(g1, e1), (g2, e2)} of directions in Dv. A turn is degenerate if it is represented by a pair
of identical directions and nondegenerate otherwise.

The star graph. Let τ = (G, σ) be a marked graph of groups. For each w ∈ W thought of
as an element of the fundamental group π1(G, ⋆), represent the conjugacy class of σ♯(w) by a
graph-of-groups edge path

γw = g0e1g1 . . . ekgk

which is cyclically reduced in the sense that eē is not a subpath of any cyclic reordering of
γw for any oriented edge e of G. We say the path γw takes the turns [{(1, ēi), (gi, ei+1)}]
for 1 ≤ i ≤ k − 1 and [{(g−1

k , ēk), (g0, e1)}]. Since γw is cyclically reduced, these turns are
nondegenerate. The star graph of τ with respect to W has as vertex set the disjoint union of
Dv as v varies over the vertices of G and an edge connecting a pair of directions (necessarily
based at the same vertex v) if the turn they determine is taken by some γw. Thus each turn
of γw based at v corresponds to |Gv| edges of the star graph. Since turns taken by γw are
nondegenerate, the star graph has no loop edges. If τ is reduced, then ∥τ∥ may be computed
from the star graph as

∥τ∥ = 1

2

∑
v∈G

∑
d∈Dv

valence(d)

|Gv|
.

Ideal edges. An ideal edge based at v in G is a subset α of Dv with the following properties.

1. The sets α and Dv − α have at least two elements.

2. The set α contains at most one element of each Gv-orbit of directions.

3. There is a direction (g, e) ∈ α with the property that no direction with underlying edge
ē belongs to α. (We may have that ē /∈ st(v).)

Write D(α) for the set of directions satisfying item 3 of the above definition. We are mainly
interested in the case where τ is reduced and F = A1 ∗ · · · ∗ An ∗ Fk where n ≥ 1. In this
situation, every vertex of G has nontrivial vertex group, so item 2 implies that Dv − α has at
least two elements if α has at least two elements. There is an ideal edge based at v if and only
if v has valence at least two, in which case we say that v is active. The action of Gv on Dv

descends to an action on the set of ideal edges based at v, and we say α and α′ are equivalent
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if they belong to the same Gv-orbit. An ideal edge α is contained in an ideal edge β if both are
based at v and α is equivalent to a subset of β. We say α and β are disjoint if they are based
at different vertices or if they are based at a vertex v and their Gv-orbits are disjoint. We say
α and β are compatible if one is contained in the other or they are disjoint.

In the case where Gv is trivial, the set Dv−α is also an ideal edge, and we say α and Dv−α
are equivalent, but compatibility remains the same.

Blowing up ideal edges. Given an ideal edge α in a marked graph of groups τ , we describe
a new marked graph of groups τα = (Gα, σα) obtained from τ = (G, σ) by blowing up the
ideal edge α. The graph Gα is the same as the graph G with an additional vertex vα and
an additional edge α. The oriented edge α has initial vertex v and terminal vertex vα. An
oriented edge e incident to v in G is now incident to vα if there is a direction in the orbit e in
α; all other oriented edges remain incident to the vertices they were incident to in G. All edge
groups remain trivial, all vertex groups remain what they were in G, and the new vertex has
trivial vertex group. There is a collapse map Gα → G which collapses the edge α and sends an
edge e incident to vα to the edge path ge, where (g, e) ∈ α. This collapse map is a homotopy
equivalence; choose a homotopy inverse f : G → Gα and define σα = fσ.

If τ is reduced, the marked graph of groups τα represents a vertex of L: collapsing any edge
e in D(α) yields a reduced marked graph of groups ταe in which the edge α is not collapsed.
When τ is reduced, we say that ταe is obtained from τ by the elementary Whitehead move (α, e).
When it is convenient, we will sometimes write (α, d) where d ∈ D(α) is a direction, rather
than an edge. The vertices τ and ταe of L are connected by an edge path of length two in L
called an elementary Whitehead path. Following [Vog95], we denote paths in L by listing their
vertices; so the elementary Whitehead path from τ to ταe is (τ, τα, ταe ).

If α and α′ are equivalent, say α′ = gα, then τα and τα
′
are equivalent: one isomorphism

h : Gα → Gα′
is the identity on the common edges and vertices (and vertex groups) of Gα and

Gα′
, sends vα to v′α and α to the edge path gα′.
If α is contained in the ideal edge β, then α corresponds to an ideal edge α of τβ based at

vβ . If α is based at v and β is based at w and they are disjoint, then α corresponds to an ideal

edge α of τβ based at v and vice versa. In this latter situation we have (τα)
β
= (τβ)

α
.

An ideal forest Φ = {α1, . . . , αI} in a reduced marked graph of groups τ is a set of pairwise
compatible ideal edges containing at most one element of each equivalence class. By repeatedly
blowing up ideal edges in Φ that are maximal with respect to inclusion, we obtain a marked
graph of groups τα1,...,αI . The edges {α1, . . . , αI} are a forest in the sense of [Lym22c], and
collapsing them recovers τ .

The absolute value of an ideal edge. Following Culler and Vogtman [CV86], define the
dot product of two subsets S and T of the set of vertices of a graph to be the number of
(unoriented) edges with one vertex in S and the other in T . The absolute value of S is the dot
product of S with its complement. An ideal edge corresponds to a subset of the set of vertices
of the star graph, so we may compute |α|. If α′ = g.α, then we have |α| = |α′|. A direction
d likewise has an absolute value |d| = |{d}|. If d′ = g.d for some g ∈ Gv, then |d′| = |d|. Put
another way, the absolute value of a direction is actually a property of the underlying oriented
edge e, and we will sometimes write |e| for |d|.

It follows from [KV93, Lemma 4.7 and Propositions 6.4, 6.5] that if Φ = {α1, . . . , αI} is an
ideal forest in a reduced marked graph of groups τ and {e1, . . . , eI} is a collection of edges in τ
which form a collapsible forest in τα1,...,αI , after possibly reordering and reversing orientation
of the ei, we have directions di ∈ D(αi) with underlying oriented edges ei such that collapsing
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the edges ei yields a marked graph of groups τα1,...,αI
e1,...,eI such that

∥τα1,...,αI
e1,...,eI ∥ = ∥τ∥+

I∑
i=1

|αi| −
I∑

i=1

|ei|. (⋆)

A Whitehead move (α, e) is reductive if ∥ταe ∥ ≤ ∥τ∥ and strictly reductive if the inequality
is strict. By Equation (⋆), reductivity is equivalent to the condition that |α| ≤ |e|. An ideal
edge α is reductive if every Whitehead move supported by that edge is reductive. The proof of
contractibility in [CV86, KV93] goes by finding reductive ideal edges compatible with a given
collection of ideal edges. In our case, we want to avoid reductive ideal edges if possible.

If we have F = A1 ∗ · · · ∗ An ∗ Fk, let s1, . . . , sk be a free basis for Fk, and suppose W
contains the elements

{aiaj : ai ∈ Ai − {1}, aj ∈ Aj − {1}, i < j}

assuming n ≥ 2 along with the elements

{siaj , ajsi : aj ∈ Aj} and {sisj , sis−1
j : i ̸= j}.

Note that W therefore contains the si. Throughout this paper, we assume that Out(F ) is
infinite, i.e. that F ̸= F1, A1, A1 ∗ F1 or A1 ∗A2.

Lemma 1.1 (cf. Lemma 2.2 of [Vog95]). For W as above, the absolute value of each edge and
each ideal edge in a reduced marked graph of groups τ is nonzero, and the star graph of τ with
respect to W has exactly one connected component for each vertex of τ . Moreover, if n ≥ 2,
for each vertex v, there exists an oriented edge e with initial vertex v such that there exists an
edge in the star graph between every pair of directions in Dv with the same underlying edge e.

Proof. Let τ = (G, σ) be our reduced marked graph of groups. The main idea of the proof
is [Ser03, 6.5 Corollary 2], which states that if each w ∈ W is elliptic in (the action of F on
the Bass–Serre tree of) some graph of groups with fundamental group identified with F , then
actually all of F is elliptic. We produce such splittings by possibly blowing up τ (although
strictly speaking we do not always blow up ideal edges) and then collapsing all but one edge of
the resulting graph of groups. As long as the blown-up graph of groups is minimal, we have a
contradiction.

Let us apply this principle. If |e| = 0, then each σ♯(w) for w ∈ W does not cross the edge
e. Collapse the other edges of G to obtain a free splitting of F , that is, a graph of groups with
trivial edge groups and fundamental group identified with F , in which F is elliptic. Since G
was minimal, this is a contradiction, so we conclude that |e| ≠ 0. If α is an ideal edge of τ
with |α| = 0, then thinking of α as an edge of τα, we can make the same argument to reach a
contradiction. Therefore |α| ≠ 0.

Next we prove that the star graph of τ with respect toW has one component for each vertex
v of τ . Write Γv for the induced subgraph of the star graph comprising all those edges between
directions in Dv. If v has valence one in G, then n ≥ 2, and letting Gv ∼= Ai, the existence of
the words aiaj (or their inverses) in W implies Γv is connected.

So suppose v has valence at least two. If every component of Γv has one vertex, then in
particular some edge of G satisfies |e| = 0, which we already saw was impossible. So we may
suppose some component C of Γv has at least two vertices. Since Out(F ) is infinite, assuming
Γv is disconnected, Γv \ C has at least two vertices. To see this, observe that if Γv \ C is a
single direction d, then |d| = 0, which implies that the Gv-orbit of d cannot be contained in C,
or, if Gv is trivial, that |d̄| = 0, so d̄ cannot be contained in C if Gv is trivial. In other words,
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if Γv \ C contains exactly one vertex, then it actually contains at least two. Write GC for the
stabilizer of C in the action of Gv on Γv. Although C does not form an ideal edge in general,
we may still apply the procedure in the paragraph “Blowing up ideal edges” to produce a new
graph of groups τC = (GC , σC) with one more edge, which we denote as C. The edge C has
edge group GC . The only way GC could fail to be minimal is if GC = Gv and either v or the
new vertex vC has valence one in GC . But together this would imply that either C is empty
or all of Γv. Collapsing all the edges of GC other than C produces a splitting (not necessarily
free) of F in which each w ∈ W is elliptic, a contradiction. Therefore we conclude that Γv is
connected in this case.

For the final statement, observe that topologically the edge path representing aiaj is like a
rubber band held at two points: the map factors through a two-to-one branched cover of the
circle over the interval. The branch points correspond to turns between a pair of directions with
the same underlying edge. As ai and aj vary, every vertex of τ (which has nontrivial vertex
group because τ is reduced) appears as the image of one of these branch points. In fact, fixing
aj but allowing ai to vary in Ai, if the branch point corresponding to ai yields a turn between
a pair of directions with underlying oriented edge e, we see that every pair of directions with
the same underlying oriented edge equal to e are connected by an edge in the star graph.

For the remainder of the paper, we fix W such that balls are compact and such that the
hypotheses and conclusions of the previous lemma hold.

2 Connectivity at Infinity

We fix our free product F = A1 ∗ · · · ∗ An ∗ Fk. Recall from the introduction our dimension
formula

dim(L(F )) =

{
2k + n− 2 n ≥ 2

max{2k + n− 3, 0} otherwise.

Thus it has dimension zero (i.e. is a single point) for (n, k) = (0, 1), (1, 0), (1, 1), and (2, 0). It
follows that Out(F ) has zero ends (i.e. is finite) in these cases.

The complex L has dimension one, i.e. is a tree, for (n, k) = (3, 0) and (0, 2). Since it is
easy to see that this tree is “bushy”, i.e. is not quasi-isometric to the line, it follows that these
groups, which have more than one end, actually have infinitely many. In [Lym22a], we showed
that additionally the group Out(A1 ∗ A2 ∗ Z) has infinitely many ends, even though for this
choice of (n, k), the complex L has dimension two.

The goal of this section is to show that in all the remaining cases, the complex L(F ) is
connected at infinity, hence the groups Out(F ) are one ended.

Let Bk denote the ball of radius k. Since we have chosen W such that balls of radius k
are compact, it is the union of finitely many stars of reduced marked graphs of groups, where
the star of a reduced marked graph of groups τ is the subcomplex spanned by the set of all
τ ′ collapsing onto τ . Since L is locally finite and the star of τ is finite, there are only a finite
number of reduced marked graphs of groups whose stars have nonempty intersection with Bk.
Let Ck denote the union of all of these reduced marked graphs of groups, and let

N(k) = max{∥τ∥ : τ ∈ Ck}.

From here on out, we will say briar patch for reduced marked graph of groups. To show con-
nectivity at infinity, we will show that any two briar patches with norm at least N(k) can be
connected by a path that lies outside of Bk.
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To do this, we start with a path between our two briar patches of a given form, and then
push it outside of Bk by a homotopy. We say that a path P = (γ0, γ1, . . . , γℓ) is standard if it
has even length ℓ = 2m, if γ2i is a briar patch for 0 ≤ i ≤ m, and if (γ2i, γ2i+1, γ2i+2) is an
elementary Whitehead path for each i satisfying 0 ≤ i ≤ m − 1. Since Out(F ) is generated
by Whitehead automorphisms in the sense of [CZ84] together with the finite group of factor
automorphisms that fix a certain briar patch, given any two briar patches τ and τ ′, there is a
standard path from τ to τ ′.

We will push P toward infinity by eliminating local minima. Consider a briar patch τ = γ2i
of minimal norm along P , say ∥τ∥ = m. The briar patches γ2i+2 and γ2i−2 are obtained from τ
by elementary Whitehead moves (α, e) and (β, f) respectively. By choosing τ carefully, we may

assume that ∥ταe ∥ > m, i.e. that |α| > |e| and that ∥τβf ∥ ≥ m, so that |β| ≥ |f |. We replace

the subpath (τβf , τ
β , τ, τα, ταe ) of P by a new standard path from τβf to ταe that passes through

only briar patches of norm strictly greater than m.

Lemma 2.1. Suppose dim(L(F )) ≥ 2 and F is not of the form A1∗A2∗Z. Suppose τ is a briar

patch of norm m and ταe and τβf are briar patches obtained from τ by elementary Whitehead

moves satisfying ∥ταe ∥ > ∥τ∥ and ∥τβf ∥ ≥ ∥τ∥. There is a standard path from ταe to τβf which
passes through only briar patches of norm strictly greater than m.

The bulk of this section is given to proving Lemma 2.1. For now we use it to prove the
following piece of Theorem B.

Theorem 2.2. If F = A1 ∗ · · · ∗ An ∗ Fk is such that dim(L(F )) ≥ 2 and not of the form
A1 ∗A2 ∗ Z, then L(F ) is connected at infinity.

Proof. In the situation of the statement, suppose ρ and ρ′ are briar patches of norm at least
N(k), and let P be a standard path from ρ to ρ′. If P does not already lie outside Bk, then there
is a briar patch τ of norm m ≤ k along P . By assumption on ρ and ρ′, we may choose τ such
that the adjacent briar patches along P , call them ταe and τβf , which we have already observed
are obtained from τ by elementary Whitehead moves, satisfy the assumptions of Lemma 2.1.
In fact, we may choose τ to have minimum norm along P and satisfying these assumptions.
We may therefore replace the subpath (τβf , τ

b, τ, τα, ταe ) by a new standard path from τβf to ταe
with only briar patches of norm strictly greater than τ in its interior.

We may repeat this process. At each stage, our new standard path has fewer briar patches
of minimum norm m, and since N(k) > k, we may even increase this minimum until it is bigger
than k, at which point after finitely many repetitions of this process, we have a standard path
from ρ to ρ′ that avoids Bk, as desired.

The process in Lemma 2.1 is the opposite of Collins and Zieschang’s “Peak Reduction”.
Like in [CZ84], the easy case is when the ideal edges α and β are compatible.

Lemma 2.3. Suppose α and β are compatible ideal edges of the briar patch τ , and suppose
(α, e) and (β, f) are Whitehead moves such that (α, e) strictly increases and (β, f) does not

decrease norm. There is a standard path from ταe to τβf with at most one briar patch in its
interior whose norm is strictly greater than the norm of τ .

Proof. We follow [Vog95, Lemma 3.1]. Consider (G, σ) = τα,β . We think of α and β as edges
of G. Our standard path lies in the link of (G, σ) in L and we describe it by listing the edges of
G which must be collapsed. So, for example, we have ταe = {β, e}.

If {e, f} is a (collapsible) forest in G, we may take our path to be

({β, e}, {e}, {e, f}, {f}, {α, f}).
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If f ̸= e, the middle vertex of this path is τα,βe,f . Since |α| > |e| and |β| ≥ |f |, Equation (⋆)
shows that this briar patch has norm greater than ∥τ∥. If instead e = f , this path degenerates
to the elementary Whitehead path (ταe , τ

α,β
e , τβe ).

Suppose now that {e, f} is not a forest in G. One case where this happens is when α = β.
In this case both e and f belong to D(α), so we may take the degenerate path (ταe , τ

α, ταf ).
Suppose instead that α ̸= β. Since e and f are individually collapsible in G, they do not

form loops and have at least one endpoint with trivial vertex group. If {e, f} is not a forest, the
subgraph of groups spanned by {e, f} must be connected and have fundamental group of the
form A1 ∗A2, Z or A1 ∗Z. In other words, the subgraph is either a loop on two edges or a path
on two edges, and at least one vertex common to both edges has trivial vertex group. In fact,
because α and β are distinct, the subgraph must contain both vα and vβ , both of which have
trivial vertex group. It follows that the subgraph is the loop on two edges with fundamental
group Z. We see that ē ∈ D(β) and f̄ ∈ D(α). In other words, {α, e} and {β, f} are forests. If
|e| ≥ |f |, then we may consider the path

({β, e}{β}{β, f}, {f}, {α, f}).

The briar patch ταf corresponding to {β, f} has norm

∥ταf ∥ ≥ ∥ταe ∥ > ∥τ∥.

if |f | > |e|, then we may consider instead the path ({β, e}, {e}, {α, e}, {α}, {α, f}). The briar
patch τβe corresponding to {α, e} has norm

∥τβe ∥ > ∥τ
β
f ∥ ≥ ∥τ∥.

As in [Vog95], the proof of Lemma 2.3 gives a simplicial map of a subdivided square into

L which maps the center to τα,β and the corners to τ , ταe , τ
β
f and a briar patch τα,βT for some

maximal forest T in τα,β . In the case where α ̸= β and e ̸= f , then τα,βT is a briar patch
with norm strictly greate than τ . The square, see Figure 1, provides a homotopy rel endpoints
between the old path and the new one.

Now, in general, we may not assume that α and β are compatible. The strategy for proving
Lemma 2.1 is to find a sequence of ideal edges α = γ0, γ1, . . . , γn = β such that each γi is
compatible with its neighbors and supports a strictly increasing Whitehead move (γi, ei). By
Lemma 2.3, we obtain a standard path from τγi

ei to τ
γi+1
ei+1 , and the concatenation of all of these

standard paths will be the standard path we seek. We will describe the outline of the argument
in a moment.

Firstly, the size of an ideal edge is its cardinality, while the size of a Whitehead move is
the size of its ideal edge. (Let us remark that in the case where n = 0 and an ideal edge α is
equivalent to Dv − α, we should take the size of α to mean the size of the smaller of the two.)
Next, let the edge number of F , denoted en(F ), be the quantity 2k + n − 1. Assuming that
n ≥ 1, if τ is a briar patch in L(F ) with one vertex ⋆ with valence greater than one, then the
valence of ⋆ is en(F ). Finally, say that a vertex of τ is active if it has valence at least two.
Active vertices support ideal edges.

In the course of our proof of Lemma 2.1, each ideal edge γi aside from α and β will have
size two or size three. Our first step is to reduce to the case where τ has one active vertex.

Lemma 2.4. Suppose τ has more than one active vertex and that the given ideal edges α and
β are not already compatible. Then α and β are compatible with a size-two ideal edge γ (based
at a different vertex) which strictly increases norm.
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τ ταe

τβf

τα,β

τα,βT

Figure 1: The subdivided square in the proof of Lemma 2.3.

Proof. This is a quick corollary of the fact (Lemma 2.8 below) that when n ≥ 2, which is
necessary for τ to have more than one active vertex, each active vertex supports a strictly
increasing Whitehead move of size two, and that ideal edges based at different vertices are
compatible.

By Lemma 2.3, Lemma 2.1 follows in this case.
Supposing then instead that τ has only one active vertex, our first step is the following

lemma.

Lemma 2.5. If τ is a briar patch supporting the Whitehead move (α, e) such that |α| ≥ |e|,
then either α has size two, or α is compatible with a size-two ideal edge which supports a strictly
increasing Whitehead move.

Proof of Lemma 2.5. Note that if an ideal edge α does not have size two, then it contains a
trio (to be defined below, see the discussion before Lemma 2.9) unless its underlying edges
are of the form {e, f, f̄}. If it contains a trio, then α is compatible with a size-two ideal edge
supporting a strictly increasing Whitehead move by Lemma 2.9, and if not the same holds by
Lemma 2.10.

Lemma 2.5 allows us to restrict our attention to the more well-behaved class of size-two
Whitehead moves.

Here is our main step. Consider the simplicially subdivided polygons in Figure 2. Further
subdivide each one by introducing a new vertex at the midpoint of each edge in the boundary
of the polygon. Suppose (α, e) and (β, f) are Whitehead moves of size two based at τ such that
|α| ≥ |e| and |β| > |f |. A good polygon from α to β in the star of τ is a simplicial map of the
further subdivided polygon into L with the following properties.

1. The center of the polygon is mapped to τ .
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τα1 τβ1

τα2τβ2 τα2∪β2
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τα τα∪η1 τη1

τβ∪η1

τβ

τβ∪γ2

τγ2

τα∪γ1

τγ1

τγ1∪η2

τη2 τγ2∪η2

Figure 2: The simplicially subdivided polygons in the proof of Theorem 2.2.

2. Each vertex of the polygon (three for the triangle, four for the rectangle, six for the
hexagon) is mapped to a marked graph of groups τσ obtained from τ by blowing up an
ideal edge σ of size two.

3. The marked graphs of groups τα and τβ are mapped to vertices of the polygon.

4. Each midpoint of an edge (three for the triangle, four for the rectangle, six for the hexagon)
is mapped to a marked graph of groups τσ obtained from τ by blowing up an ideal edge
of size three.

5. Each size-three ideal edge σ is compatible with the size-two ideal edges corresponding to
the endpoints of the edge which σ corresponds to the midpoint of.

6. At most one size-three ideal edge corresponding to a vertex of the polygon is reductive.

7. At most one size-two ideal edge (specifically α) corresponding to a vertex of the polygon
is reductive.

Lemma 2.6. Suppose τ has one active vertex supporting Whitehead moves (α, e) and (β, f)
of size two such that |α| ≥ |e| and |β| > |f |. Assume that n ≥ 1, en(F ) ≥ 3, and that
F ̸= A1 ∗ A2 ∗ Z, and that α and β are not compatible. Either (after rechoosing α and β in
their equivalence class) we have that α∪ β is an ideal edge which is not reductive, or there is a
good polygon in the star of τ from α to β.

With this lemma in hand, we complete the proof of Lemma 2.1.

Proof of Lemma 2.1. We begin with our given Whitehead moves (α, e) and (β, f) as in the
statement. By Lemma 2.4 and Lemma 2.3, if τ has more than one active vertex, then there is
a standard path from ταe to τβf with only briar patches of norm strictly greater than ∥τ∥ in its
interior.

If instead τ has only one active vertex, then by Lemma 2.5, we may replace α and β by
ideal edges of size two, call them α′ and β′ that support Whitehead moves (α′, e′) and (β′, f ′)
satisfying |α′| ≥ |e′| and |β′| > |f |. Then by Lemma 2.6, there is a good polygon in the star of
τ . Since there is at most one vertex of the polygon (aside from the vertex τα) corresponding
to a reductive ideal edge σ, a path around the polygon from τα

′
to τβ

′
that avoids that vertex

τσ gives a sequence of ideal edges α′ = γ1, . . . , γm = β′ such that each γi is compatible with its
neighbors and supports a strictly increasing Whitehead move. By Lemma 2.3, we are done.
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The remainder of this section is given to proving the statements left unproved above:
Lemma 2.8, needed in the proof of Lemma 2.4, Lemma 2.5 and Lemma 2.6.

Reduction to one active vertex. We turn first to Lemma 2.8, for which our main tool is
the following lemma, due to Vogtmann. We give a proof for completeness.

Lemma 2.7 (Lemma 3.2 of [Vog95]). Let u, v and w be vertices of a simplicial graph (for
example the star graph of τ) and S the set of other vertices. If |{u, v}| ≤ |v| and |{u,w}| ≤ |w|,
then {u} · {v} = {u} · {w} and {u} · S = 0.

Proof. It is clear that if two sets S and T of vertices of a graph are disjoint, then for any set A
of vertices, we have

A · (S ∪ T ) = A · S +A · T.
Writing S for the set of other vertices as in the statement, we have

|{u, v}| = {u} · S + {u} · {w}+ {v} · {w}+ {v} · S

and
|v| = {v} · S + {v} · {u}+ {v} · {w}.

Our first inequality implies that

{u} · S + {u} · {w} ≤ {u} · {v}.

Calculating with w in place of v, we see that

{u} · S + {u} · {v} ≤ {u} · {w}.

Therefore we conclude that {u} · S = 0 and {u} · {v} = {u} · {w}.

Using Lemma 2.7, we prove Lemma 2.8.

Lemma 2.8. Let τ be a briar patch and suppose that n ≥ 2. Let v be a vertex of τ of valence
at least two. There is a strictly increasing Whitehead move of size two based at v.

Proof. Since n ≥ 2, by Lemma 1.1, the star graph of τ contains an edge betwen a pair of
directions d and d′ in Dv with the same underlying oriented edge e. Since v has valence at least
two, there are a pair of ideal edges α = {d, c} and α′ = {d, c′} where c and c′ are distinct and
have underlying oriented edges different from e and ē. If both of the Whitehead moves (α, c)
and (α′, c′) are reductive, then by Lemma 2.7, we have d · S = 0, where S denotes the set of
remaining vertices in the star graph aside from d, c and c′. This contradicts the existence of
the edge from d to d′.

Finding increasing Whitehead moves of size two. We will now turn to the proof of
Lemma 2.5. Following Vogtmann, define a trio to be a set {e, f, g} of three oriented edges
with common initial vertex ⋆ of a briar patch τ which does not contain an edge twice, once in
each orientation. A trio has the property that ({d, d′}, d) is an elementary Whitehead move for
any choice of directions d and d′ representing edges of the trio. We say the trio supports these
Whitehead moves.

Vogtmann proves the following lemma using Lemma 2.7.

Lemma 2.9 (Lemma 3.3 of [Vog95]). For every choice of three directions {u, v, w} representing
the oriented edges of the trio {e, f, g}, at least one of the three size-two ideal edges {u, v}, {u,w}
and {v, w} supports a strictly increasing Whitehead move.
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Proof. Suppose all Whitehead moves supported by the ideal edges in the statement are reduc-
tive. Repeatedly applying Lemma 2.7, we see that the directions u, v and w form an isolated
component of the star graph. This contradictis Lemma 1.1.

Lemma 2.10. Suppose (α, e) is a Whitehead move satisfying |α| ≥ |e|. If the underlying
oriented edges of α are of the form {e, f, f̄}, and we write α = {u, v, v̄}, then one of the
size-two Whitehead moves {u, v} or {u, v̄} supports a strictly increasing Whitehead move.

Proof. Suppose towards a contradiction that the ideal edges {u, v} and {u, v̄} are reductive.
Applying Lemma 2.7, writing S for the set of directions not equal to u, v or v̄, we see that
{u} · S = 0 and {u} · {v} = {u} · {v̄}. Since

|v| = {v} · {u}+ {v} · {v̄}+ {v} · S = |v̄|,

the latter equality implies that {v} ·S = {v̄} ·S. We have by assumption |{u, v, v̄}| ≥ |u|, which
implies that {v} · S ≥ {u} · {v}. Now,

|{u, v}| = {u} · {v̄}+ {v} · S and |{u}| = {u} · {v}+ {u} · {v̄},

so since we assume {u, v} is reductive, we conclude that {v}·{v̄} = 0 and that {v}·S = {u}·{v}.
In particular |v| = |u|.

Now, either e, the underlying oriented edge of u, forms a loop, or it does not. If it does,
because {u} · S = 0, by G⋆-equivariance of the star graph, every occurence of e (in either
orientation) in each w ∈ W is followed or preceded by an occurence of f , the underlying
oriented edge of v. Since |e| = |f |, each word has an equal number of occurrences of e and f .
Therefore, if we project to the subspace of H1(F,Z/2Z) spanned by e and f , we see that each
word w ∈W has image (0, 0) or (1, 1). Since these words do not form a basis for Z/2Z⊕Z/2Z,
this contradicts our assumption that the words w ∈W satisfy the hypotheses of Lemma 1.1.

Supposing instead that e does not form a loop, then every w ∈W contains an even number of
occurrences of e and therefore an even number of occurences of f , which is again a contradiction
mod 2.

We need the following elementary observation.

Lemma 2.11. Suppose S is a nonempty subset of the vertices of a simplicial graph containing
the vertex x. We have that |S| ≤ |x| if and only if we have that

{x} · T ≥ 1

2
|T |,

where T is the set S − {x}. In particular equality holds in one equation if and only if it holds
in the other.

Proof. Write T c for the complement of T . On the one hand, we have |x| = {x} · T + {x} · T c,
and on the other, we have

|S| = {x} · T c + T · (T c − {x}).

A bit of algebra finishes the proof.

Corollary 2.12. Suppose T is a nonempty subset of the vertices of a simplicial graph. There
are at most two choices of a vertex x /∈ T such that |T ∪ {x}| ≤ |x|. If there are two choices,
say x and x′, then we have |T ∪ {x}| = |x| and |T ∪ {x′}| = |x′| and in fact elements of T are
only connected to each other, x and x′.
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Proof. By Lemma 2.11, We have that |T ∪{x}| ≤ |x| if and only if {x} ·T ≥ 1
2 |T |. If this holds

for another x′ /∈ T , notice that we then have

|T | ≤ {x} · T + {x′} · T ≤ |T |.

Therefore equality holds throughout and the statement follows.

For size-two ideal edges, we have the following strengthening.

Corollary 2.13. Suppose u and v are directions based at a vertex ⋆ in a briar patch τ with
valence at least three. Suppose that ⋆ has nontrivial vertex group G⋆, and that {u, v} is an ideal
edge. There is at most one h ∈ G⋆ such that {u, h.v} ∼ {h−1.u, v} is reductive.

Proof. By Corollary 2.12 applied to T = {u}, we see that there are at most two h ∈ G⋆ such
that {u, h.v} is reductive. Supposing that there are two, we may without loss of generality
suppose that one is v and the other is h.v. Corollary 2.12 allows us to conclude that u is
connected only to v and h.v in the star graph. But applying Corollary 2.12 to T = {v}, we see
that v is only connected to u and h−1.u. It follows that the G⋆-orbits of u and v together form
an isolated component of the star graph. This contradicts Lemma 1.1, since ⋆ has valence at
least three.

We also need the following elaboration of Corollary 2.12.

Lemma 2.14. Suppose u, v, w, x, y are five distinct vertices of a simplicial graph. Suppose that

|{u, v, w}| ≤ min{|u|, |v|, |w|}, that |{u, v}| ≥ min{|u|, |v|} and |{u,w}| ≥ min{|u|, |w|}|,

and that one of the above inequalities involving {u, v} and {u,w} is strict. If |{u, v, x}| ≤ |x|,
then |{u,w, y}| > |y|.

Proof. By two applications of Corollary 2.12, if there exists y such that |{u,w, y}| ≤ |y|, we
have |w| = |{u, v, w}| = |v|, and that u is connected only to v and w; that is, we have that
|u| = {u} · {v, w}. But notice that the first chain of equalities together with the inequalities
in the statement implies that |v| = |w| ≤ |u|. So the inequalities in the statement imply by
Lemma 2.11 that {u} · {v} ≤ 1

2 |u| and that {u} · {w} ≤ 1
2 |u|, and that one of the inequalities

is strict. This is a contradiction.

Finding good polygons: the proof of Lemma 2.6. For the remainder of this section,
we turn to the proof of Lemma 2.6. Assuming (α, e) and (β, f) are size-two Whitehead moves
satisfying |α| ≥ |e| and |β| > |f | which are not compatible, there are three cases based on the
configurations of α and β. We briefly describe the cases.

1. Case one: α = {u, v} and β = {u,w}. In our first case, the directions {u, v, w} represent
a trio; that is, they are drawn from three distinct unoriented edges.

2. Case two: α = {u, v} and β = {u, v̄}. In our second case, we have that {u, v, v̄} is an
ideal edge, but the three directions u, v and v̄ do not form a trio because v and v̄ share
an underlying unoriented edge.

3. Case three: α = {u, v} and β = {u, v′}, where v′ = g.v for some nontrivial g ∈ G⋆. In
our third case, the set of directions {u, v, v′} is not an ideal edge.
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Case one. In this case α ∪ β = {u, v, w} is an ideal edge. If it is not reductive, we are done.
Supposing α∪β is reductive, the good polygon we will build is the triangle in Figure 2 left.

The ideal edge γ = γ(g) will be of the form {v, g.w} ∼ {g−1.v, w} for some nontrivial element
g ∈ G⋆. Recall that in view of Vogtmann [Vog95], we assume that n ≥ 1. We have the ideal
edges α ∪ γ(g) = {u, v, g.w} and β ∪ γ(g) = {u, g−1.v, w}. By Lemma 2.14, at most one of the
size-three ideal edges α∪ γ(g) and β ∪ γ(g) is reductive as g varies over the nontrivial elements
of G⋆.

First, observe that no ideal edge of the form γ(g) is reductive when g ∈ G⋆ is nontrivial.
Indeed, if some γ(g) were reductive, by Lemma 2.11, we have {v} · {g.w} ≥ 1

2 |v|. Notice that

|v| ≤ {v} · {g.w}+ {g−1.v} · {w} ≤ |{u, v, w}| ≤ |v|,

so we conclude that equality holds throughout. In fact, by replacing v with w (and viewing
γ(g) as {g−1.v, w}), we conclude that |v| = |w| = |{u, v, w}| ≤ |u|, and in particular we have
|u| = {u} · {v, w}. As in the proof of Lemma 2.14, this is a contradiction: since at least one of
α and β is not reductive, we have by Lemma 2.11 that

{u} · {v}+ {u} · {w} < |u|.

Next we show that in fact no ideal edge of the form α∪ γ(g) or β ∪ γ(g) is reductive. Recall
that by Lemma 2.14, since we assume that α ∪ β is reductive, there is at most one such edge,
suppose it is α ∪ γ(g). The argument in the case it is of the form β ∪ γ(g) will be identical.
By Lemma 2.11, we have that 1

2 |α| =
1
2 |{u, v}| = {w} · {u, v} = {g.w} · {u, v}. We will show

that |α ∪ γ(g)| > |α|, contradicting our assumption that this ideal edge is reductive. Indeed,
we claim that

|{u, v, g.w}| > 2{u, v} · {w} = |α|.

Indeed, observe that {g.w} · {g.u, g.v} = {w} · {u, v} by G⋆-equivariance of the star graph,
so it is clear that we have inequality. That the inequality is strict follows in the case where
en(F ) > 3 by Lemma 1.1, since the G⋆-orbits of the directions u, v and w cannot form an
isolated component of the star graph. If instead en(F ) = 3, so that n ≥ 2, then again by
Lemma 1.1, we must have {w} · {g.w} > 0.

Thus any choice of g ̸= 1 in G⋆ yields a good polygon from α to β.

Case two. Recall that in this case we assume that α = {u, v} and β = {u, v̄}, i.e. that α ∪ β
is an ideal edge, but v and v̄ share an underlying unoriented edge. If α∪β is not reductive, we
are done. Supposing this ideal edge is reductive, the good polygon from α to β we will build
will be the rectangle in Figure 2 center, where we set α1 = α and β1 = β.

To construct this good polygon, we need size-two ideal edges α2 and β2 so that α1 ∪ β2,
α2 ∪ β1 and α2 ∪ β2 are size-three ideal edges (where we may abuse notation slightly so that
these unions may be taken) and so that none of these five ideal edges (including α2 and β2) are
reductive.

Since we assume that F ̸= A1 ∗A2 ∗ Z, there exists a direction w whose G⋆-orbit is disjoint
from {u, v, v̄}; we choose one such. For h ∈ G⋆, we focus on the ideal edges α(h) = {u, h.v},
β(h) = {u, h.v̄}, γ(h) = {v̄, h.w} and δ(h) = {v, h.w}. We have α = α(1) and β = β(1) and will
choose α2 from {α(g), γ(1), γ(g)} and β2 from {β(g), δ(1), δ(g)} for g ∈ G⋆ nontrivial. Observe
that by abusing notation slightly, for any choice of α2 and β2, the size-three ideal edges α∪β2,
α2 ∪ β and α2 ∪ β2 make sense to define.

By Corollary 2.13, at most one of γ(1) and γ(g) is reductive, and similarly for δ(1) and
δ(g). Since we assume that {u, v, v̄} is reductive, neither α(g) nor β(g) can be reductive: if,
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say, |α(g)| ≤ |v|, we have that {u} · {g.v} ≥ 1
2 |u| by Lemma 2.11, but this would that

|u| ≤ {u} · {g.v}+ {v} · {g−1.u} < |{u, v, v̄}|,

contradicting our assumption that this ideal edge is reductive.
Notice that if γ(1) is reductive, we have in particular that {v̄} · {w} ≥ 1

2 |w|. Then all four
of the ideal edges β(1) ∪ γ(g), β(g) ∪ γ(g), δ(1) ∪ γ(g) and |δ(g) ∪ γ(g) are greater in absolute
value than {v̄} · {w}+ {g.v̄} · {g.w} ≥ |w| and so are not reductive.

From this it follows that if there are two reductive size-two ideal edges under consideration,
there is a good polygon from α to β. For instance, if γ(1) and δ(g) are reductive, the relevant
path around the good polygon reads

α, α ∪ δ(1), δ(1), γ(g) ∪ δ(1), γ(g), β ∪ γ(g), β.

We proceed continuing to assume that γ(1) is reductive, but now assuming that neither
δ(1) nor δ(g) is reductive. If one of α ∪ β(g), α ∪ δ(1) or α ∪ δ(g) is not reductive, we may use
that ideal edge together with ideas above to construct a good polygon from α to β. Explicitly,
if α ∪ δ(1) is not reductive, the relevant path reads

α, α ∪ δ(1), δ(1), δ(1) ∪ γ(g), γ(g), β ∪ γ(g), β.

We will show that having all three ideal edges reductive leads to a contradiction. In fact, this
does not use the assumption that γ(1) is reductive. Indeed, by Corollary 2.12, we conclude
assuming that α∪β and α∪β(g) are reductive that |v| ≤ |u|. If we had equality, Corollary 2.12
would additionally imply that α∪δ(1) and α∪δ(g) are greater in norm than |w|, in contradiction
to our assumption that these ideal edges are reductive. Again by Corollary 2.12, we conclude
that |w| ≤ |v| as well. Therefore in particular by Lemma 2.11, we have |α| = {w, g.w} · {u, v} ≤
|w|. Since therefore |w| ≥ |α| ≥ |v|, we conclude that equality holds throughout. But it
cannot, since this would imply that the G⋆-orbits of the directions u, v and w form an isolated
component of the star graph, in contradiction to Lemma 1.1.

Finally, assume that none of the ideal edges γ(1), γ(g), δ(1) or δ(g) are reductive. Now
by Corollary 2.12, at most two of the four ideal edges α ∪ β2, which take the form {u, v, x},
are less than |x| in norm. If we have |u| < |v|, since α ∪ β is reductive, this is the only ideal
edge of that form which is reductive, and similarly for ideal edges of the form {u, v̄, x}. It
remains, then, just to show that one of the ideal edges of the form α2 ∪ β2 is not reductive.
Suppose, for instance, then, that α(g)∪β(g) is reductive. This, by Corollary 2.12, implies that
|{v, v̄}| = {u, g−1.u} · {v, v̄} ≤ |u|. Since |u| < |v|, this implies that |{v, v̄}| < |v|, so that
{v} · {v̄} > 1

2 |v|, and therefore γ(1) ∪ δ(g) and γ(g) ∪ δ(1) are both greater in norm than |v|,
and thus are not reductive unless |v| < |w|. But notice that because |u| < |v|, reductivity of
α(g) ∪ β(g) implies that {u, g.v, g.v̄} < |g.v̄| = |v|; by Corollary 2.12 it is the only ideal edge
of the form {u, g.v, x} to be less than or equal to |x| in norm. In particular |α(g) ∪ δ(1)| > |w|
and so is not reductive. This provides a good polygon from α to β in this case.

We therefore assume that |v| ≤ |u|. Now if |w| < |v|, for each of the ideal edges γ(1), γ(g),
δ(1), and δ(g) at most of the relevant size-three ideal edges containing it can be reductive by
Corollary 2.12. The only worry, then, is that both γ(1) ∪ β and γ(g) ∪ β are reductive or,
symmetrically, both α ∪ δ(1) and α ∪ δ(g) are reductive. But in either case this implies that
|v| ≤ |w|: for instance in the latter case we have |v| ≤ |{u, v}| = {w, g.w} · {u, v} ≤ |w|. This
contradiction provides a good polygon from α to β in this case.

Continuing to assume that |v| ≤ |u|, we now suppose that |v| ≤ |w|. Since the argument in
the previous case that not all three ideal edges of the form α∪ β2 are reductive did not use the
assumption that γ(1) was reductive, we conclude that at least one ideal edge of the form α∪β2
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is not reductive. Suppose at first that we may choose β2 = δ(1). (By relabelling if necessary,
this is equivalent to choosing δ(g).) Now by symmetry we know that at least one ideal edge
of the form α2 ∪ β is not reductive, but we can show more: If both δ(1) ∪ β and δ(g) ∪ β are
reductive, then |v| = |w| = {w, g.w} · {u, v̄} = |{u, v̄}|, which is a contradiction to Lemma 1.1,
(as well as the assumption that β is not reductive) since it implies that the G⋆-orbits of u, v̄
and w form an isolated component of the star graph.

Therefore either δ(1) ∪ β or δ(g) ∪ β is not reductive. Suppose at first the former is not
reductive. If δ(1)∪γ(1) is not reductive, we are done. Supposing it is, we see by Lemma 2.11 that
{u,w} · {v, v̄} = |{v, v̄}|. This implies that |{v, v̄, g.w}| = |w|+ |{v, v̄}|, that |{g−1.u, v, g.w}| ≥
|v| + |{v, v̄}|, that |{g−1.u, v̄, g.w}| ≥ |v| + |{v, v̄}|, and that |{g−1.u, v, v̄}| = |u| + |{v, v̄}| so
these ideal edges are not reductive. If we can show that one of α ∪ β(g) or α ∪ δ(g) is not
reductive and that one of α(g) ∪ β and γ(g) ∪ β is not reductive, we will have a good polygon
from α to β.

Suppose, then, that α ∪ β(g) and α ∪ δ(g) are reductive. From the former, we conclude
that {u} · {v} = {u} · {v, g.v̄} ≥ 1

2 |{v, g.v̄}| = |v|, so equality holds throughout. This implies
that |v̄| = {w} · {v̄}. From reductivity of the latter, we conclude using Lemma 2.11 that
|{u, g.w}| = {u} · {v}+ {w} · {v̄}. In particular |u| = {u} · {v, g.w} and |w| = {w} · {g−1.u, v̄}.
This implies that |{u, g.v, v̄}| = |u| + 2|v| and that |{g−1.u, v, w}| = 3|v|, so neither of these
ideal edges are reductive, and we have a good polygon from α to β, the relevant path around
which reads

α, α ∪ δ(1), δ(1), α(g) ∪ δ(1), α(g) ∪ β, β.

A symmetric argument dispenses with the case in which both α(g) ∪ β and δ(g) ∪ β are
reductive. We have two nested assumptions that need to be dispensed with: the outer one,
that α ∪ δ(1) is not reductive, and the inner one, that γ(1) ∪ β is not reductive.

So, still supposing that α ∪ δ(1) is not reductive, suppose that γ(1) ∪ β is reductive. As
we noted above, this implies that γ(g) ∪ β is not reductive, and therefore if γ(g) ∪ δ(1) is not
reductive, we are done. We therefore suppose that it is reductive. We first show that γ(g)∪δ(g)
is not reductive. Indeed, if it were, we see by Corollary 2.12 that {u, g.w}·{v, v̄} = |{v, v̄}|. Since
γ(g)∪δ(1) is reductive, we conclude that in fact {g.w} ·{v̄} = {g.w} ·{g.v, v̄} ≥ 1

2 |{v, g
−1.v}| =

|v̄|, so equality holds throughout. But this contradicts our assumption that γ(1)∪β is reductive,
since by Lemma 2.11 that implies that {v̄} · {u,w} ≥ 1

2 |{u,w}| > 0.
Thus we are done if α ∪ δ(g) is not reductive. So suppose it is. Applying Lemma 2.11, we

see that

|u|+|w| ≤ {u}·{v, v̄}+{w}·{g−1.v, v̄}+{u}·{w}+{u}·{g.w} ≤ |u|+|v|−{u}·{w}−{g−1.u}·{w},

so we have equality throughout; in particular {u}·{w} = {g−1.u}·{w} = 0. But this contradicts
reductivity of γ(g) ∪ δ(1), since we must have {w} · {v, g−1.v̄} ≥ 1

2 |{v, g
−1.v̄}| > 0. Therefore

we again have a good polygon from α to β.
Finally, we supposed that we could choose α ∪ δ(1) to not be reductive. To negate this,

in view of the possibility of relabelling, we may assume that α ∪ δ(1) and α ∪ δ(g) are both
reductive. This implies that |w| = |v|, and thus that {w, g.w} · {u, v} = |{u, v}|. As we saw,
we must have that α ∪ β(g) is not reductive. Since this is equal in norm to |{u, v}| + |v|,
we have that these sum to more than |u|. By Lemma 2.11, this implies that {u} · {v} < |v|.
But reductivity of α ∪ β actually implies that {u} · {v} = {u} · {v, v̄} ≥ 1

2 |{v, v̄}| = |v|. This
contradiction completes the proof in this case.

Case three. Recall that in this case we assume that α = {u, v} and β = {u, g.v}, i.e. α and
β share both underlying oriented edges. In this case α ∪ β fails to be an ideal edge. Since
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en(F ) ≥ 3, there exists a direction w based at ⋆ whose G⋆-orit is distinct from that of u and v;
choose one.

The proof breaks into two cases: either we are able to choose w so that {u, v, w} represents
a trio, or we are not able to, in which case we may choose w to either be ū or v̄, since we assume
that F ̸= A1 ∗A2 ∗ Z.

The first subcase. Suppose at first that {u, v, w} represents a trio. We consider the ideal
edges γ(1) = {u,w}, γ(g) = {u, g.w}, δ(1) = {v, w} and δ(g) = {v, g.w}. We will use these
ideal edges to build a good polygon (the rectangle in Figure 2) from α to β.

Observe that we cannot have that α ∪ γ(1) and α ∪ γ(g) are both reductive. If we did,
we conclude by Corollary 2.12 that |α| = {w, g.w} · {u, v}. An argument based on Lemma 1.1
shows that both α∪γ(1) and α∪γ(g) must be strictly greater in norm than this quantity, which
in turn is not less than the minimum of |u| and |v|, implying neither ideal edge is reductive
after all. The same argument applies to all the pairs α∪δ(1) and α∪δ(g), β∪γ(1) and β∪γ(g)
and β ∪ δ(1) and β ∪ δ(g).

In fact, provided that, say, γ(1) is not reductive, the same argument above proves that
α ∪ γ(1) and β ∪ γ(1) cannot both be reductive. By Corollary 2.13, at most one of γ(1) and
γ(g) is reductive, and similarly for δ(1) and δ(g).

So suppose for instance that γ(1) and δ(g) are not reductive. At most one of α ∪ γ(1)
and α ∪ γ(g) can be reductive; suppose the latter is not. If β ∪ γ(g) = β ∪ δ(1) is reductive,
then we have that both α ∪ δ(g) = α ∪ γ(g) and β ∪ δ(g) are not reductive. This actually
suffices to prove the theorem, but we can work a little harder to complete this to a good
polygon. If both γ(g) and δ(1) are reductive, we have {w} · {g−1.u, v} = |w|. This implies that
|β ∪ γ(1)| = |{u, g.v, w}| > 2|w|, so is not reductive. (In fact, with a little more care, it can
be shown that the ideal edge α ∪ γ(1) is also not reductive, so the good polygon with corners
α, γ(1), β, and δ(g) has no reductive size-three ideal edges.) If, say, δ(1) is not reductive,
continuing to assume that β∪γ(g) = β∪ δ(1) is reductive, we conclude that α∪γ(1) = α∪ δ(1)
is not, and we have a good polygon with corners α, δ(1), β and δ(g). A variant of this argument
works in all cases.

The second subcase. So suppose instead that F = A1 ∗F2: our only choices for w are ū and
v̄. We will consider the ideal edges γ(1) = {u, v̄}, γ(g) = {u, g.v̄}, δ(1) = {ū, v}, δ(g) = {ū, g.v},
η(1) = {ū, v̄} and η(g) = {ū, g.v̄}. The good polygon we build will be either the rectangle or
the hexagon in Figure 2, right, with α and β seprarated by one vertex of the polygon.

Now, by Corollary 2.13, at most one γ ideal edge, one δ ideal edge and one η ideal edge
can be reductive. Suppose that there are three such. For simplicity assume they are γ(1),
δ(1) and η(1): the other cases are essentially identical. Then by Lemma 2.11, we have that
{barv}·{u, ū} = |barv|, while {ū}·{v, v̄} = |ū|. In particular |u| = |v|. Observe, then, that each
of the ideal edges α∪γ(g), β ∪γ(g), α∪ δ(g) and β ∪ δ(g) are greater in norm than 3

2 |v| =
3
2 |u|,

so none of these ideal edges are reductive and we have a good rectangle from α to β.
Suppose next that there are two reductive size-two ideal edges. Up to swapping u and v,

we will consider the cases of γ(1) and η(1) as well as γ(1) and δ(1); the others are essentially
identical. If γ(1) and η(1) are reductive, then by Lemma 2.11, we have that |v̄| = {v̄} · {u, ū}.
We claim that we have a good rectangle with corners

α, γ(g), β and δ(1).

To see this, suppose that one of the relevant size-three ideal edges is reductive. For example, if
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α ∪ γ(g) is reductive, we have

|v| ≥ {u} · {v} = {u} · {v, g.v̄} ≥ 1

2
|{v, g.v̄}| = |v|.

It follows that |β ∪ γ(g)| = |u| + |v| + |v̄| and |β ∪ δ(1)| = |v| + |{g−1.u, ū}|, so neither of
these ideal edges is reductive. And additionally, by Lemma 2.11, if α ∪ δ(1) is reductive, then
|ū| = {ū} · {u, v̄} < {u} · {u, v, v̄} = |u|, which is impossible. The argument if β ∪ γ(g) is
reductive is analogous. On the other hand, if α∪ δ(1) is reductive, it follows from Lemma 2.11
that |v| = {v} · {u, ū} = 1

2 |{u, ū}|. Then |β ∪ γ(g)| = |u| + 2|v|, so this ideal edge is not
reductive. Reductivity of β∪δ(1) or α∪γ(g) would imply respectively that {v}·{ū} = |v| = |u|
or {v} · {u} = |v|. But again this would imply in either case that |u| and |ū| cannot be equal,
but they must. The case that β ∪ δ(1) is reductive is again analogous. The existence of a good
rectangle follows.

If instead γ(1) and δ(1) are reductive, we again have a good rectangle, this time with corners

α, γ(g), β and δ(g).

Indeed, Lemma 2.11 implies that {v̄} · {u} ≥ 1
2 |u| and

1
2 |v̄|, while {v} · {ū} ≥

1
2 |ū| and

1
2 |v|.

We observe then, that |α ∪ γ(g)| ≥ 3
2 |u| because we have

{u} · {v̄}+ {v} · {ū}+ {g.v̄} · {g.u} ≤ |{u, v, g.v̄}.

Similarly we see that |α ∪ δ(g)| ≥ 3
2 |v| and |β ∪ δ(g)| ≥

3
2 |v|, so none of these ideal edges are

reductive.
If there is only one reductive size-two ideal edge, up to swapping the roles of u and v it

is either a γ or an η. Suppose that the reductive ideal edges is γ(1), so that by Lemma 2.11,
we have {u} · {v̄} ≥ 1

2 |v| and
1
2 |u|. Since the G⋆-orbits of u, v and v̄ cannot form an isolated

component of the star graph, we conclude that |β ∪ γ(g)| > |u| and |α ∪ γ(g)| > |u|. The same
argument applies to show that |α∪ δ(g)| > |v| and |β ∪ δ(g)| > |v|, so we have a good rectangle
from α to β. The argument supposing γ(g) is reductive is identical.

If instead η(1) is reductive, we see by Lemma 2.11 that {ū} · {v̄} ≥ 1
2 |v| and

1
2 |u|. This

implies that α ∪ γ(1) and β ∪ γ(g) cannot both be reductive, for if they were, we would have
|{v, v̄}| = {u, g−1.u} · {v, v̄} in contradiction to the fact that {v̄} · {ū} > 0. Similarly at most
one of α ∪ γ(g) and β ∪ γ(1), one of α ∪ δ(1) and β ∪ δ(g) and one of α ∪ δ(g) and β ∪ δ(1) are
reductive.

Now by Corollary 2.12, at most two ideal edges of the form α ∪ {x} satisfy |α ∪ {x}| ≤ |x|,
and if there are two, equality holds. If |u| < |v|, we see that α∪ γ(1) and α∪ γ(g) cannot both
be reductive. If |u| > |v|, the same applies to α∪ δ(1) and α∪ δ(g), and if |u| = |v|, at most two
of these four ideal edges may be reductive. The same holds for size-three ideal edges containing
β.

Suppose |u| < |v|. If α∪γ(1) and β∪γ(1) are reductive, then α∪γ(g) and β∪γ(g) are not,
and if α ∪ δ(1) is reductive, then β ∪ δ(g) is not and regardless of whether α ∪ δ(g) is, we have
a good rectangle from α to β. The same proof works if α ∪ γ(g) and β ∪ γ(g) are reductive. If
neither of these occurs, then at most one of the four size-three ideal edges is reductive and we
again have a good rectangle.

If we suppose |v| < |u|, swapping the roles of u and v completes the proof as above. So
suppose |v| = |u|. Now at most two of the four size-three ideal edges containing α are reductive,
and similarly for β. If there are three or fewer, or more generally, if for some γ or some δ, the
relevant size-three ideal edges are both not reductive, we have a good rectangle. If there are
four, each involving a different γ or δ, we can build a hexagon. Indeed, because three of the
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four directions cannot form an isolated component of the star graph, no size-three ideal edge
containing η(g) is reductive. For example if α ∪ γ(1) and β ∪ γ(g) are not reductive, one good
hexagon has corners

α, δ(1), β, γ(g), η(g) and γ(1).

Now suppose no size-two ideal edge is reductive. Again we will distinguish between the case
|u| < |v| and the case of equality. In the former case, again we have that not both of α ∪ γ(1)
and α ∪ γ(g) are reductive and similarly for β ∪ γ(1) and β ∪ γ(g). If only one of these four
ideal edges is reductive, we have a good rectangle. If α∪ γ(1) and β ∪ γ(1) are both reductive,
this would contradict Corollary 2.12 as well. Suppose, then, that α ∪ γ(1) and β ∪ γ(g) are
both reductive. Then |v| > |u| ≥ {u, g−1.u} · {v, v̄} = |{v, v̄}|, so {v} · {v̄} > 1

2 |v|. From this it
follows that δ(1) ∪ η(1), δ(g) ∪ η(1), δ(1) ∪ η(g) and δ(g) ∪ η(g) are all not reductive.

Observe that at most two of the size-three ideal edges α ∪ δ(1), β ∪ δ(g) γ(1)η(1) and
γ(g) ∪ η(g) can be reductive by Lemma 2.11. The same holds true for α ∪ δ(g), β ∪ δ(1),
γ(g) ∪ η(1) and γ(1) ∪ η(g). If at most one of the four size-three ideal edges α ∪ δ(1), β ∪ δ(1),
α∪ δ(g) and β ∪ δ(g) is reductive, we have a good rectangle. If there are two, say α∪ δ(1) and
β∪δ(1), we again have a good rectangle by including δ(g) and either γ ideal edge as corners. A
similar statement holds if instead α∪δ(g) and β∪δ(g) are reductive. If α∪δ(1) and β∪δ(g) are
reductive but α ∪ δ(g) and β ∪ δ(1) are not, then γ(g) ∪ η(g) and γ(1) ∪ η(1) are not reductive
and one good hexagon from α to β has corners

α, γ(g), β, γ(1), η(1) and δ(g).

A similar statement holds if the two reductive ideal edges containing a δ ideal edge are α∪ δ(g)
and β ∪ δ(1).

If three ideal edges containing a δ are reductive, say α ∪ δ(1), α ∪ δ(g) and β ∪ δ(g), then
{v, g.v} · {u, ū} = |{u, ū}|, while {v} · {g.ū, u} = {v} · {u} ≥ 1

2 |{g.ū, u}| = |u|. But this implies
that |β∪γ(g)| = |u|+ |{g.v, g.v̄}|, contradicting the assumption that this ideal edge is reductive.

Finally suppose that |u| = |v|. Then at most two ideal edges containing any given size-two
ideal edge may be reductive by Corollary 2.12. Consider, for example, the γ and δ ideal edges.
At most two of these together with α may be reductive and similarly for β. If for some γ or δ
neither size-three ideal edge is reductive, we have a good rectangle from α to β, because for at
least one of the remaining γ or δ ideal edges, at most one of the relevant size-three ideal edges
is reductive.

So suppose that for all γ and δ, at least one of the size-three ideal edges containing it
and either α or β is reductive. But then notice that at least one of the size-three ideal edges
containing it and either η(1) or η(g) is not reductive. In fact, we have a good hexagon unless for
each size-two ideal edge there are two others for which the corresponding size-three ideal edge
is reductive and for, say, η(1), either η(1) and α have the same set of size-two ideal edges which
yield (non)-reductive size-three ideal edges or η(1) and β have this property (and therefore
similarly for η(g).)

Suppose for definiteness that α ∪ γ(1) and α ∪ δ(g) are reductive, β ∪ γ(g) and β ∪ δ(1) are
reductive, η(1) ∪ γ(1) and η(1) ∪ δ(g) are reductive, η(g) ∪ γ(g) and η(g) ∪ δ(1) are reductive.
(Notice that swapping for instance δ(1) and δ(g) above is not possible by Corollary 2.12.) We
claim this is not possible. Indeed, by Lemma 2.11, we have that {u, g−1.u} · {v, v̄} = |{v, v̄}|,
while 0 = {ū} · {v̄, g.v} ≥ 1

2 |{v̄, g.v}|, which is impossible. A similar argument works in all
cases; this completes the proof.
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3 Semistability at infinity

The goal of this section is to prove Theorem C. Recall that we write Bk for the ball of radius
k. We continue to let

N(k) = max{∥τ∥ : τ ∈ Ck},
where Ck denotes the set of reduced marked graphs of groups (“briar patches”) whose stars
have nonempty intersection with Bk. To prove semistability, we will show that when L(F )
is one ended, for a proper ray ρ : R≥0 → L, with ρ(k) a briar patch such that the sequence
∥ρ(k)∥ > N(k) is strictly increasing, the inverse sequence

π1(L−Bk, ρ(k))

satisfies the Mittag-Leffler condition.

Theorem 3.1. Suppose L(F ) is one ended. If n ≥ N(k), then every loop in L− BN(k) based
at ρ(N(k)) is homotopic to a loop in L−Bn based at ρ(n) by a homotopy that avoids Bk.

When L(F ) is not one ended, we will use our good algebraic understanding of Out(F ) to
show that each end of L(F ) is semistable.

To prove Theorem 3.1, we need the following proposition.

Proposition 3.2 (cf. Proposition 4.1 of [Vog95]). Every path in L − Bk is homotopic to a
standard path in L−Bk by a homotopy in L−Bk.

To prove the proposition, we need a lemma.

Lemma 3.3. Let G be a marked graph of groups representing a vertex of L with two maximal
forests F and F ′. For each edge e′ ∈ F ′ − F , there exists an edge e ∈ F − F ′ such that
F ∪{e′}− {e} is a maximal forest. Put another way, if G is not a briar patch, the collection of
maximal forests in G forms a matroid.

Recall that a matroid is simply a (nonempty) set, some of whose finite subsets are called
bases. The bases of a matroid satisfy an exchange condition similar to the one in the statement
of the lemma. Other examples include the set of spanning trees in a finite graph which is not
a rose or the set of bases of a vector space of finite positive dimension.

Proof. Let F , F ′ and e′ be as in the statement. Since F was maximal, F ∪ {e′} fails to be
a maximal forest, either because as a graph it has rank one or because it connects a pair of
vertices a and b with nontrivial vertex group. Let C be either the minimal subgraph supporting
the (ordinary) fundamental group of F ∪ {e′} in the former case or the unique geodesic from a
to b in the latter. Now because F ′ is a maximal forest, C cannot be completely contained in
F ′, so any edge of F − F ′ contained in C will do as e.

Proof of Proposition 3.2. If γ is a marked graph of groups which lies outside of Bk, then every
marked graph of groups it collapses onto is also outside of Bk by definition. Thus if we have
a path P = (γ0, γ1, . . . , γℓ), by collapsing forests in alternating marked graphs of groups, we
may assume that each γk with k even is a briar patch. If ℓ is odd, we may extend P by some
collapse of γℓ to a path of even length. If γk−1 and γk+1 are briar patches obtained in this way,
they are obtained from γk = (G, σ) by collapsing maximal forests F and F ′ in G.

By repeatedly applying Lemma 3.3, we see that we may interpolate from F to F ′ through
maximal forests by adding an edge of F ′ and removing one of F at each step. The path segment
(γk−1, γ, γk+1) is homotopic to the standard path segment

(γk−1 = ρ0, δ1, ρ1, . . . , δs, ρs = γk+1)
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where ρi is obtained from γk by collapsing the ith maximal forest Fi in the interpolation and
δi is obtained by collapsing Fi−1 ∩ Fi.

With the proposition in hand, we are ready to prove the theorem.

Proof of Theorem 3.1. Let P be a loop in L − BN(k) based at ρ(N(k)) and let n ≥ N(k). By
concatenating at both ends with an arbitrary path in L − BN(k) from ρ(N(k)) to ρ(n), we
obtain a loop P ′ based at ρ(n). (Such a path exists by Theorem 2.2.) By Proposition 3.2, P ′

is homotopic relative to its basepoint to a standard path by a homotopy in L−BN(k). By the
proof of Theorem 2.2, since ∥ρ(n)∥ > N(n), we may push P ′ outside of Bn by a homotopy. This
homotopy strictly increases the norm of briar patches along it. Since P ′ began in L − BN(k)

and N(k) is chosen so that the star of any briar patch in L−BN(k) has empty intersection with
the ball Bk, this homotopy avoids Bk.

To complete the proof of Theorem C, we need only consider the cases where Out(F ) has
infinitely many ends. In the case where dimL = 1, we see that Out(F ) is virtually free.
Since free groups are semistable at each end (consider the Mittag-Leffler condition in a tree)
and by [Geo08, Proposition 16.5.3] semistability passes to and is inherited from finite-index
subgroups, we see that Out(F ) is semistable at each end in this case.

Thus it remains to consider the case of F = A1 ∗ A2 ∗ Z. Observe that A1 and A2 are
a complete set of representatives of the conjugacy classes of maximal finite subgroups of F ,
so these conjugacy classes are permuted by Out(F ). There is a normal subgroup of index at
most two in Out(F ) comprising the pointwise stabilizer of these conjugacy classes. Call this
subgroup G.

If A is a group, the group Hol(A) = A⋊Aut(A) always admits an automorphism θ (which
is an involution when it is nontrivial) sending an element (a, ψ), with a ∈ A and ψ ∈ Aut(A),
to the element (a−1, ιa−1ψ), where ιa−1 is the inner automorphism x 7→ axa−1.

Fix a generator t of a Z free factor. The group G contains the finite group (Hol(A1) ×
Hol(A2))⋊ C2, where the cyclic group of order two acts by θ on each direct factor. Explicitly,
the subgroup A1 acts by left multiplication on t, the subgroup A2 acts by right multiplication
on t, the subgroup Aut(A1) acts on the A1 free factor, Aut(A2) on the A2 free factor, and C2

acts by the automorphism

θ̃ =


a1 7→ a1

a2 7→ ta2t
−1

t 7→ t−1.

One checks that the intersection of this group of automorphisms with the subgroup of inner
automorphisms is trivial, so it injects into Out(F ) and in fact into G.

We will also consider the infinite, one-ended subgroup of automorphisms generated by
Hol(A1) × Hol(A2) and the automorphism τ which simply inverts t. This subgroup, which
we will call H, also injects into G. To see that H is one-ended, observe that it has a map to
the finite groups Aut(A1 ×A2) and C2, defined by first using the universal property to induce
an automorphism of A1 × A2 × Z and then looking alternately at the torsion subgroup or the
action on Z. The intersection H0 of the kernels, which has finite index in H, comprises those
automorphisms which (one checks) act trivially on the A1 and A2 free factors and sends t to an
element gth, where g and h are elements of A1∗A2, so H0 is isomorphic to (A1∗A2)×(A1∗A2),
a one-ended group which is virtually the direct product of two free groups.

Proposition 3.4. The group G is isomorphic to the amalgamated free product

((Hol(A1)×Hol(A2))⋊ C2) ∗Hol(A1)×Hol(A2) H.
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It follows from the proposition that G and hence Out(F ) has a finite-index subgroup iso-
morphic to

(Fm × Fm) ∗ (Fm × Fm),

where Fm is a finite-rank free group. This latter group is a right-angled Artin group, hence is
semistable at each end by results of Mihalik [Mih96].

Proof. Firstly, we claim that the subgroup Hol(A1)× Hol(A2) together with τ and θ̃ generate
G. Indeed, it is not hard to see that Aut(F ) is generated by these elements together with the
family of automorphisms

a1 ∈ A1 7→ a2a1a
−1
2

a2 ∈ A2 7→ a2

t 7→ t


a1 ∈ A1 7→ a1

a2 ∈ A2 7→ a1a2a
−1
1

t 7→ t


a1 ∈ A1 7→ ta1t

−1

a2 ∈ A2 7→ a2

t 7→ t,

as well as possibly some automorphism permuting A1 and A2 in the case they are isomorphic.
(See for instance [Gil87] for a finite presentation of Aut(F ).) Each of these first three differs
from an automorphism in ⟨Hol(A1) × Hol(A2), τ̃ , θ̃⟩ by an inner automorphism, so the claim
follows. To finish the proof, we will use a finite presentation for Out(F ), essentially due to
Fouxe-Rabinovitch [FR41], following notation of Marchand [Mar23].

Let us fix notation. For ϕi an element of Aut(Ai), we abuse notation and think of ϕi as an
element of G via its action on the fixed Ai free factor of F . The subgroup of G generated by the
ϕi as ϕi varies in Aut(Ai) and as i varies over {1, 2} is isomorphic to Aut(A1)×Aut(A2). Given

i ̸= j and γi ∈ Ai, the partial conjugation of Aj by γi, is the automorphism α
(γi)
ij defined as

sending γj ∈ Aj to γ−1
i γjγi and fixing Ai and t. We similarly define αti where we conjugate by

t instead of γi, so γi ∈ Ai 7→ t−1γit. Finally we define the right and left transvections ρ
(γi)
i and

λ
(γi)
i as acting on t by right (respectively left) multiplication by γi ∈ Ai. The group generated

by the λ
(γ1)
1 , the ρ

(γ2)
2 and the Φi is the subgroup Hol(A1)×Hol(A2) described above.

As a special case of [Mar23, Theorem 5.2], we have that a defining system of relations for
G with respect to the generating set

{Aut(A1),Aut(A2), α
(γi)
ij , αti, λ

(γi)
i , ρ

(γi)
i , τ}

is given by the following. We follow the numbering in Marchand’s paper, omitting relations
that do not occur. Implicitly one includes relations specifying that, for instance, the subgroup

generated by λ
(γi)
i for fixed i but variable γi ∈ Ai is isomorphic to Ai. (For the worried reader:

think of automorphisms as acting on F on the left.)

1. φ1φ2 = φ2φ1, so that ⟨Aut(A1),Aut(A2)⟩ ∼= Aut(A1)×Aut(A2).

2. φiαtj = αtjφi for φi ∈ Aut(Ai) and i ̸= j.

3. φiα
(γi)
ij = α

(φiγi)
ij φi for φi ∈ Aut(Ai) and γi ∈ Ai.

4. αt1αt2 = αt2αt1.

5. αtiα
(γi)
ij α−1

ti = α−1
tj α

(γi)
ij αtj for γi ∈ Ai.

12. λ
(γi)
i ρ

(γj)
j = ρ

(γj)
j λ

(γi)
i for γi ∈ Ai and γj ∈ Aj , with i and j not necessarily distinct. Also

τλ
(γi)
i = ρ

(γ−1
i )

i τ .
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13. α
(γi)
ij τ = τα

(γi)
ij .

14. αtiτ = τα−1
ti .

15. ρ
(γi)
i φj = φjρ

(γi)
i for φj ∈ Aut(Aj) and i ̸= j.

16. ρ
(φiγi)
i φi = φiρ

(γi)
i for γi ∈ Ai, φi ∈ Aut(Ai). This, together with some of the relations

above implies that the subgroup generated by the λ
(γ1)
1 , ρ

(γ2)
2 and the φi is isomorphic to

Hol(A1)×Hol(A2).

19. ρ
(γi)
i α

(γi)
ij = α

(γi)
ij ρ

(γi)
i .

20. ρ
(γi)
i αtj = αtjρ

(γi)
i α

(γi)
ij .

21. (ρ
(γi)
i )

−1
ρ
(γj)
j ρ

(γi)
i α

(γi)
ij = α

(γi)
ij ρ

(γj)
j .

22. αtiρ
(γi)
i = λ

(γi)
i αtiφi, where ϕi is the automorphism of Ai defined by x 7→ γ−1

i xγi.

23. τφi = φiτ for φi ∈ Aut(Ai).

0. φiα
(γi)
ij ρ

(γi)
i (λ

(γi)
i )

−1
= 1, where φi is the automorphism of Ai defined by x 7→ γ−1

i xγi.
Also αt1αt2 = 1.

We introduce a new generator θ̃ and the relation θ̃ = tauαt2. As remarked already, the relations
in items 0 and 12 allow us to discard generators down to the more minimal

{Hol(A1)×Hol(A2), τ, θ̃}.

We have already seen that ⟨Hol(A1) × Hol(A2), θ̃⟩ is isomorphic to the semidirect product
(Hol(A1)×Hol(A2))⋊C2. Easy Tietze transformations yield a defining system of relations for
G for the generating set

{Hol(A1)×Hol(A2), θ̃, τ}.

Relevant to our purposes, we just need to check that every relation involving θ̃ takes place in
(Hol(A1)×Hol(A2))⋊ C2 and every relation involving τ takes place in H. Thus we need only
examine relations 2, 5, 14, 20, and 22.

2. The relation φ1αt2 = αt2φ1 becomes φ1τ θ̃ = τ θ̃φ1. Because Hol(A1)×Hol(A2) is normal
in (Hol(A1)×Hol(A2))⋊C2, right-multiplying by θ̃−1 and then using a relation discussed
before the proof shows that this relation involves only elements of H. A similar argument
works for φ2αt1 = αt1φ2, which becomes φ2θ̃τ = θ̃τφ2.

5. This relation, observing that αt2 = α−1
t1 , is spurious.

14. This relation is also spurious: it says either that αt2ταt2 = τ θ̃ττ θ̃ = τ , which follows
because τ and θ̃ have order two, or that αt1ταt1 = α−1

t2 τα
−1
t2 = τ , which follows from the

previous relation.

20. Because Hol(A1)×Hol(A2) is normal in the semidirect product, the case of this relation

of the form ρ
(γ2)
2 αt1 = αt1ρ

(γ2)
2 α

(γ2)
21 may be written with only elements of H by writing

αt1 = θ̃τ and left multiplying by θ̃−1. The same is true for the relation with the roles
of 1 and 2 swapped, where instead we left multiply by θ̃−1τ−1 and observe that after

conjugating ρ
(γ1)
1 by τ we obtain an element of Hol(A1)×Hol(A2).
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22. The same method of proof as in the previous case works: for example the relation

αt1ρ
(γ1)
1 = λ

(γ1)
1 αt1φ1 may be rewritten as τρ

(γ1)
1 = θ̃−1λ

(γ1)
1 θ̃τφ1, which takes place

in H.

Thus we have demonstrated that G splits as the amalgamated free product in the statement.
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